∫(dx/((1+x^1/3)x^1/2))计算不定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:18:25
∫(dx/((1+x^1/3)x^1/2))计算不定积分
x){ԱZ#B_CP"PXDijXOv>]7O;lIQ_`gC ѨcR*Ov/ ٖ< -3t*NJYiiJ)X-Pl.P&PLH(D ijFTU0CX.($1TA[*\&B2* W{9zbN鲦gXif @M;~9wY-ljlg-NyQ\=<;Pӭ

∫(dx/((1+x^1/3)x^1/2))计算不定积分
∫(dx/((1+x^1/3)x^1/2))计算不定积分

∫(dx/((1+x^1/3)x^1/2))计算不定积分
∫ 1/[(1+x^1/3)x^1/2] dx
令x^1/6=u,则x^1/2=u^3,x^1/3=u^2,x=u^6,dx=6u^5du
=∫ 6u^5/[(1+u^2)u^3] du
=6∫ u^2/(1+u^2) du
=6∫ (u^2+1-1)/(1+u^2) du
=6∫ (u^2+1)/(1+u^2) du - 6∫ 1/(1+u^2) du
=6u - 6arctanu + C
=6x^(1/6) - 6arctan[x^(1/6)] + C
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.