已知2^a*5^b=2^c*5^d=10,求证(a-1)(d-1)=(b-1)(c-1)如题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:38:44
已知2^a*5^b=2^c*5^d=10,求证(a-1)(d-1)=(b-1)(c-1)如题
x){}KLl⒁tγM/7j$jj [$3H<]r "}C4B/Ov,yo =Ϧo{ڷOvzkY-O|6uX]NM[G S.1'H;)'.da  #4И Ҙ11Eӎ``&T.P!X5$P 9P1zb:x6, $\…g3=oن56|YDŽ竻l @ ?

已知2^a*5^b=2^c*5^d=10,求证(a-1)(d-1)=(b-1)(c-1)如题
已知2^a*5^b=2^c*5^d=10,求证(a-1)(d-1)=(b-1)(c-1)
如题

已知2^a*5^b=2^c*5^d=10,求证(a-1)(d-1)=(b-1)(c-1)如题
两边同时去以10为底的对数
lg(2^a*5^b)=1——>alg2+blg5=1——>b=(1-alg2)/lg5
lg(2^c*5^d)=1——>clg2+dlg5=1——>d=(1-clg2)/lg5

(a-1)(d-1)=(a-1)((1-clg2-lg5)/lg5)
=(a-1)(lg2-clg2)/lg5=(a-1)(1-c)(1-lg2)/lg5
=(a-1)(1-c)
(b-1)(c-1)=(1-alg2-lg5)(c-1)/lg5
=(lg2-alg2)(c-1)/lg5=(1-a)(c-1)lg5/lg5
=(1-a)(c-1)
显然(a-1)(d-1)=(b-1)(c-1) 等式成立.