数学题 X Y都为正实数 且2X+8Y-XY=0 则X+Y的最小值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:41:31
数学题  X Y都为正实数   且2X+8Y-XY=0  则X+Y的最小值是
xRn@~=X6Y" i} *HI_5 TTNSZM $xΩ $ĭd{goTu!Bʤ2_D+`BH4Zgeݩr@Y+qܮ윔,Ob-ݣ&hDdpqMvG]އo^$0;jTd$Pk+F"ҫ*{D nkJ>B٨&SFt(7G2XW ٨D_@p1[0à#wv=}7ܬ

数学题 X Y都为正实数 且2X+8Y-XY=0 则X+Y的最小值是
数学题 X Y都为正实数 且2X+8Y-XY=0 则X+Y的最小值是

数学题 X Y都为正实数 且2X+8Y-XY=0 则X+Y的最小值是
可以设K=x+y,则得:y=K-x,代入已知得
2x+8(K-x)-x(K-x)=0
整理,得:
x²-(K+6)x+8K=0
由于存在正数x,使得上述方程成立,所以其判别式必定是非负数,即:
△=[-(K+6)]²-4×8K≥0
K²+12K+36-32k≥0
K²-20K+36≥0
(K-2)(K-18)≥0·············①
因x、y均为正数,所以再由2x+8y-xy=0得:2(x+y)=xy-6y=y(x-6)>0,即:x-6>0,得:x>6,所以K=x+y>6,K-2>0;
则不等式①解只能是:K≥18,所以x+y的最小值为18.
此时求得:x=12,y=6.