已知f(x)=(10的x次方-10的-x的次方)除以(10的x次方+10的-x次方)求奇偶性、证明在定义域内是增函数求值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:26:50
已知f(x)=(10的x次方-10的-x的次方)除以(10的x次方+10的-x次方)求奇偶性、证明在定义域内是增函数求值域
xRN@~[ʦ=S=C($FDT_nV~>~3|m#_NF4{7 ^t_ ă# LO>uVqΊE(oq;qB4׈%nӸw-QB[{F(BcmUJӰQɎft\O3K`+Ln,^ʁtQ0XN'DeН͕4w%tKqʓAPi3ܰݎsp'BEZ03:)PK5'þSLuy#e 7cp\/RlȹHuOKqLIU|q}fIRc*K^.vLQ~ؑxhv883ߑE

已知f(x)=(10的x次方-10的-x的次方)除以(10的x次方+10的-x次方)求奇偶性、证明在定义域内是增函数求值域
已知f(x)=(10的x次方-10的-x的次方)除以(10的x次方+10的-x次方)求奇偶性、证明在定义域内是增函数
求值域

已知f(x)=(10的x次方-10的-x的次方)除以(10的x次方+10的-x次方)求奇偶性、证明在定义域内是增函数求值域
1、奇偶性:f(-X)=(10^-x-10^x)/(10^-x+10^x)= -(10^x-10^-x)/(10^-x+10^x)= -f(x)
所以f(x)为奇函数
2、单调性:证:不妨设10^x=t ,t>0
则f(x)=(t-1/t)/(t+1/t)=g(t)
设t1,t2是在R上的任意实数,且t1>t2
则 g(t1)-g(t2)=(t1-1/t1)/(t1+1/t1)-(t2-1/t2)/(t2+1/t2)
=2(t1/t2-t2/t1)/(t1+1/t1)*(t2+1/t2)
=2(t1^2-t2^2)/(t1+1/t1)*(t2+1/t2)*t1*t2
又因为t1>t2,且t>0
所以g(t1)-g(t2)>0即g(t1)>g(t2)
所以在定义域内为增函数、