无盖方盒的最大容积问题 一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,求`(1.)试把方盒的容积V表示x的函数?(2)x多大时,方盒的容积V最大?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:29:12
无盖方盒的最大容积问题 一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,求`(1.)试把方盒的容积V表示x的函数?(2)x多大时,方盒的容积V最大?
无盖方盒的最大容积问题 一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,
求`(1.)试把方盒的容积V表示x的函数?
(2)x多大时,方盒的容积V最大?
无盖方盒的最大容积问题 一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,求`(1.)试把方盒的容积V表示x的函数?(2)x多大时,方盒的容积V最大?
(1)由题意得 方盒边长a-2x 高x
则体积V=(a-2x)^2*x=4x^3-4ax^2+a^2x
(2)v=4x^3-4ax^2+a^2x
dV=12x^2-8ax+a^2=(6x-a)(2x-a)=0
x=1/6a 或x=1/2a
x=1/6a v=(4/216-4/36+1/6)a^3=2/27a^3
x=1/2a v=(4/8-4/4+1/2)=0
所以x=1/6a时V最大为2/27a^3
由题意得:方盒底边长为a-2x 的正方形 , 高为x
所以容积V=(a-2x)*(a-2x)*x=4x^3-4ax^2+a^2*x
因为V=(a-2x)*(a-2x)*x=4x^3-4ax^2+a^2*x
要想容积v最大,则要其关于x的导数为0,
所以dV=12x^2-8ax+a^2=(6x-a)(2x-a)=0 ,x=1/6a 或x=1/2a
又因为x...
全部展开
由题意得:方盒底边长为a-2x 的正方形 , 高为x
所以容积V=(a-2x)*(a-2x)*x=4x^3-4ax^2+a^2*x
因为V=(a-2x)*(a-2x)*x=4x^3-4ax^2+a^2*x
要想容积v最大,则要其关于x的导数为0,
所以dV=12x^2-8ax+a^2=(6x-a)(2x-a)=0 ,x=1/6a 或x=1/2a
又因为x=1/2a时,不满足题意,所以舍去。
所以x=1/6a时V最大,且把x=1/6a 代入V=(a-2x)*(a-2x)*x=4x^3-4ax^2+a^2*x
得到最大值为2/27a^3
收起
高中就会学了,上大学后数学课有