高二数学几何求解!1 在菱形ABCD中,角BAD=60度 AB=10 PA垂直平面ABCD,且PA=5 则P到BD的距离为?2 正方形棱长为1,CD分别是两条棱的中点, A BM 是顶点, 求M到面 ABCD 的距离第二题马上上图, 现求第一题!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:41:23
高二数学几何求解!1 在菱形ABCD中,角BAD=60度 AB=10 PA垂直平面ABCD,且PA=5 则P到BD的距离为?2  正方形棱长为1,CD分别是两条棱的中点, A BM 是顶点, 求M到面 ABCD  的距离第二题马上上图, 现求第一题!
xU[oG+KyمTj1<&U>#v쀉m@N]zv\uH̙s˜۴z5[|݃{[-;R|6aG{{\J8!HKMѩǽQ_HZZZE\zƥN<Ԟg 9 AGԵw Elq靽ٶ= 1T# O1pLAm$Y:59}6}fVi*}$&+*s VG40i@aP2hb# )@뼢΋<倊>pM((HTXEEC * Vz}gjx9*0?l@Ov` I`[:CA H\mCU)SJXŞi$x`aeR*^5?c&,qMǝ{}p jY8u^zWR<嬵` TOfs]n5\ xvyŀJcH%c";Tp ؏T |`ռ_@tpū{zlW?qm~9 B(JskmVp2_Fp X_E>frӭNHO)oGUe Q5NWy)Y4YyVDBC@!yYgtcr;BwZ_F -]—f4\n=:HFBц&L4S2y0�vuvgd;}64

高二数学几何求解!1 在菱形ABCD中,角BAD=60度 AB=10 PA垂直平面ABCD,且PA=5 则P到BD的距离为?2 正方形棱长为1,CD分别是两条棱的中点, A BM 是顶点, 求M到面 ABCD 的距离第二题马上上图, 现求第一题!
高二数学几何求解!
1 在菱形ABCD中,角BAD=60度 AB=10 PA垂直平面ABCD,且PA=5 则P到BD的距离为?
2 正方形棱长为1,CD分别是两条棱的中点, A BM 是顶点, 求M到面 ABCD 的距离
第二题马上上图, 现求第一题! 详细过程!

第二题图片!

高二数学几何求解!1 在菱形ABCD中,角BAD=60度 AB=10 PA垂直平面ABCD,且PA=5 则P到BD的距离为?2 正方形棱长为1,CD分别是两条棱的中点, A BM 是顶点, 求M到面 ABCD 的距离第二题马上上图, 现求第一题!
第一题:
取BD中点E,易得PE垂直于BD,所以PE的长度即为P到BD的距离.
由AB=10,角BAD=60度,可得AE=5√3.
再由PA=5,在直角三角形PAE中,有PE=10,
所以P到BD的距离是10.
第二题:
记M上方的顶点为N
延长AC,BD,MN相交于点E,对四面体EABM用两种方法求体积可以求得M到面ABCD的距离,
即三角形ABM的面积×ME=三角形ABE的面积×M到面ABCD的距离.
经过计算,可求得M到面ABCD的距离为2/3.
当然有直接做垂线的方法,不过这里打字不太容易说清楚,楼主权作参考.

第一题;根号下5倍根号3的平方+5的平方

1,

如图,可得P到BD的距离PO=10,

全部展开

1,

如图,可得P到BD的距离PO=10,

收起

按尺寸