已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]时,f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:25:37
xRAK0+҄5 ~WqP7vXNeN!A7[3n)ӳ^|{{/!f%/>^w=Q~Y*xjE2LW`x<9ZDbr 9$Wb؈b-L4sg/vϟNP88RqZ73[ɛ
n0ջ;u'">.+JLOI wdhM!*6l6"rMn1 )(E (/ -?Ę.cq0A`dEC>.}\a*4Fkѯ~:C ڬ5Q@L:`$2AC-. vb\W!(jf+n^~/bI
已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]时,f(x) 已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]时,f(x)
已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]时,f(x)
因为f(x)=ax^3+cx+d (a≠0)是R上的奇函数,所以f(x)=-f(-x),得d=0
因为x=1时取极值-2,所以f'(1)=0,f(1)=-2
得3a+c=0,a+c=-2
所以a=1,c=-3
所以f(x)=x^3-3x
f'(x)=3x^2-3
令f'(x)=0,得x1=-1,x2=1
所以f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减
f(-1)=2,f(3)=27-9=18
所以在[-3,3]上f(x)max=18
已知函数F(x)=ax^3+bx^2+cx(
已知函数f(x)=ax^3-cx,-1
已知0和1是函数f(x)=ax^3+bx^2+cx+d的零点,且f(-1)
已知函数f(x)=ax^3+bx^2+cx+d的图像如下,求b的取值范围
已知函数f(x)=ax^3+bx^2+cx+d的图像如下,求b的取值范围
题目是已知函数f(x)=ax^3+bx^2+cx+d的图像如图所示.
已知奇函数f(x)=ax^3+bx^2+cx+d在点(1,f(1))处的切线方程为y=x+1,则这个函数的单调递增区间是奇函数f(x)=ax^3+bx^2+cx+d则f(-x)=-f(x)∴ -ax³+bx²-cx+d=-(ax^3+bx^2+cx+d)∴ b=0,d=0 为什么b=0,d=0?
设三次函数f(x)=ax^3+bx^2+cx+d(a
设三次函数f(x)=ax^3+bx^2+cx+d(a
已知等式(x-3)*(x-3)*(x-3)*(x-3)*(x-3)*=ax*ax*ax*ax*ax*+bx*bx*bx*bx*+cx*cx*cx+dx*dx*+ex+f ,求a-b+c-d+e
已知函数f(x)=ax^3+bx^2+cx+d,有三个零点分别是0,1,2 f(x)在(-∞,x1]单增 [x1,x2]单减 [x2,+∞)单增 求x1^2+x2^2 __________错了.不是f(x)=ax^3+bx^2+cx+d 是f(x)=x^3+bx^2+cx+d
已知:f(x)=ax^5+bx^3+cx-8,且f(d)=10,求f(-d)
已知f(x)=ax^5+bx^3+cx-8,且f(d)=10,求f(-d)
已知函数y=f(x)=cx+d/ax+b (ad-bc≠0) 求它的反函数
设函数f(x)=ax^3+cx+5,已知f(-3) =3,则f(3)=?
设函数f(x)=ax³+cx+5,已知f(-3)=3,则f(3)等于急!
已知函数f(x)=ax^5+bx^3+cx+3,若f(5)=8,求f(-5)
已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时函数f(x)取得极值-2 求函数f(x)的单调区间