设函数y=log2(ax^2-2x+2)>2在x属于[1,2]上恒成立,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 20:26:42
设函数y=log2(ax^2-2x+2)>2在x属于[1,2]上恒成立,求实数a的取值范围
xSn@P +Ň,J#Q*9 lK+(/҂PF5 %m_wlVBul"Y#;;xހ5_~i_֍t+^-gat싷]sJB~կ`;h\呔

设函数y=log2(ax^2-2x+2)>2在x属于[1,2]上恒成立,求实数a的取值范围
设函数y=log2(ax^2-2x+2)>2在x属于[1,2]上恒成立,求实数a的取值范围

设函数y=log2(ax^2-2x+2)>2在x属于[1,2]上恒成立,求实数a的取值范围

函数log2(ax^2-2x+2)>2在x∈【1,2】上恒成立
∴ 函数log2(ax^2-2x+2)>log2(4)在x∈【1,2】上恒成立
∵ y=log2(x)在(0,+∞)上是增函数
∴ ax^2-2x+2>4在x∈【1,2】上恒成立
即 ax²>2x+2在x∈【1,2】上恒成立
即 a>2/x+2/x²在x∈【1,2】上恒成立
∴ a>(2/x+2/x²)的最大值
∵ f(x)=2/x+2/x²在【1,2】上是减函数
∴ f(x)的最大值为f(1)=4
∴ a>4
即 a的取值范围是a>4 希望对你有用!请及时采纳!

即ax^2-2x+2>4恒成立,1.当a=0时,-2x>2,x<-1,无解:2.当a不等于0时,当a>0时,则1.当1/a>2时,则f(1/a)>0,解得a<=1/2,2.当1/a<1时,则,f(1)>0,解得a>4.无解;当a