已知函数f(x)=2x-4,x∈[0,1]与g(x)=x²-2x+a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x0)= g(x1)成立,则的取值范围为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:29:58
已知函数f(x)=2x-4,x∈[0,1]与g(x)=x²-2x+a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x0)= g(x1)成立,则的取值范围为( )
xPJQ~!$4"b0-rRhA *-#)0)];W3ݶZ||z./O^ G#~RRrJ+DͰA)+P?_yes/Su5jQe;UEU%nUvu]|PpZ[7w20]x.I?ok(kнF@WD ؇Pig@L4hƺ (A(UiCÛ!ONݜwŜ^0-F" jwn3[A6<}/|s

已知函数f(x)=2x-4,x∈[0,1]与g(x)=x²-2x+a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x0)= g(x1)成立,则的取值范围为( )
已知函数f(x)=2x-4,x∈[0,1]与g(x)=x²-2x+a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],
使得f(x0)= g(x1)成立,则的取值范围为( )

已知函数f(x)=2x-4,x∈[0,1]与g(x)=x²-2x+a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x0)= g(x1)成立,则的取值范围为( )
题意是说在x属于[0,1]时,f(x)的值域包含g(x)的值域
所以,f(x)的值域为[-4,-2]
g(x)=(x-1)^2+a-1的值域为[a-1,a]
-4

由题目知,f(x)是在[-4,-2],g(x)在[a-1,a],则要满足上式成立,则[a-1,a]包含于【-4,-2】求得,【-3,-2】