1计算(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)2计算(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:41:53
1计算(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)2计算(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004
xUiN@ ?5N1ĤF=!z M7M %hkJ~!qp8[ w%+Ru|i2%Xb>$D3Kpg ;}{ 'M30PpYn21'& %O !ٱvp]v")߄j‡Mtt`4ۢouoi|>y> <+}* ySq Q so^GCK6ZUm`<[sXejݷ]K

1计算(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)2计算(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004
1计算
(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)
2计算
(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004)

1计算(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)2计算(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004
第一题:
先把减号后面这一式子拆开:
(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17+1/19)(1/11+1/13+1/17)
=(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1+1/11+1/13+1/17)(1/11+1/13+1/17)-1/19(1/11+1/13+1/17)
=(1+1/11+1/13+1/17)(1/11+1/13+1/17+1/19-1/11-1/13-1/17)-1/19(1/11+1/13+1/17)
=1/19(1+1/11+1/13+1/17)-1/19(1/11+1/13+1/17)
=1/19(1+1/11+1/13+1/17-1/11-1/13-1/17)
=1/19
第二题:
与前一题的解法一样,先把减号后面这一式子拆开:
(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1+1/2+...+1/2005)(1/2+1/3+...+1/2004)
=(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004)-(1/2+1/3+...+1/2005)(1/2+1/3+...+1/2004)-(1/2+1/3+...+1/2004)
=(1/2+1/3+.+1/2005)(1+1/2+1/3+.+1/2004 -1/2-1/3-...-1/2004)-(1/2+1/3+...+1/2004)
=(1/2+1/3+.+1/2004+1/2005)-(1/2+1/3+...+1/2004)
= 1/2005

1、原式=[1+(1/11+1/13+1/17)](1/11+1/13+1/17+1/19)-[1+(1/11+1/13+1/17+1/19)](1/11+1/13+1/17)
= (1/11+1/13+1/17+1/19)+(1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1/11+1/13+1/17)-(1/11+1/13+1/17+1/19)(1/11+1...

全部展开

1、原式=[1+(1/11+1/13+1/17)](1/11+1/13+1/17+1/19)-[1+(1/11+1/13+1/17+1/19)](1/11+1/13+1/17)
= (1/11+1/13+1/17+1/19)+(1/11+1/13+1/17)(1/11+1/13+1/17+1/19)-(1/11+1/13+1/17)-(1/11+1/13+1/17+1/19)(1/11+1/13+1/17)
=1/11+1/13+1/17+1/19-1/11-1/13-1/17
=1/19
2、方法与1、相同
结果为1/2005

收起

把(1/11+1/13+1/17)看成A
则此式为(1+A)(A+1/19)-(1+A+1/19)A
=A+1/19+A^2+(1/19)A-A-A^2-(1/19)A
=1/19
第二题思路也一样,你自己试试吧