若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:39:47
若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
xN@_@j) Ml.z_C&J,B#1$ vrE腛I/;7bBvu8ZfJ "Y[)'9 ڃ2PNL.[UǠYKO*}#]HCtTZ'cB#a9b zFEa7-3+ 8#kPL"TjR gGIS'ghRgjm2٩X 2.242ADf7JB.vn h]5ɒ|SyxoerqJLD"`A1kc _agǤW1EƒssF"\_-.!+CC5u;u Wy-Ȋߡd4ߙLH++c\CkbFfGr^^'OZU

若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——

若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
当2m²-m-3>0时
即(2m-3)(m+1)>0
m>3/2 或m

答:
y=(2m²-m-3)x+m
y=(2m-3)(m+1)x+m
因为:
m=3/2或者m=-1时,y=m≠1
所以:
m≠3/2并且m≠-1
1)
m<-1或者m>3/2时,(2m-3)(m+1)>0
y是直线上升的直线
x=-1时取得最小值1
所以:-2m²+m+3+m=1
...

全部展开

答:
y=(2m²-m-3)x+m
y=(2m-3)(m+1)x+m
因为:
m=3/2或者m=-1时,y=m≠1
所以:
m≠3/2并且m≠-1
1)
m<-1或者m>3/2时,(2m-3)(m+1)>0
y是直线上升的直线
x=-1时取得最小值1
所以:-2m²+m+3+m=1
所以:2m²-2m-2=0
所以:m²-m-1=0
解得:m=(1+√5)/2或者m=(1-√5)/2(不符合舍去)
所以:m=(1+√5)/2
2)
-1y是直线下降的直线
x=1时取得最小值1
所以:2m²-m-3+m=1
所以:2m²=4
解得:m=√2
综上所述,m=√2或者m=(1+√5)/2

收起