证明:1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:33:18
证明:1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!
x){ٌ>+C} CmCMEm#} #0Q2<}<PʴI*']~ v!slAl]CM 1^[0O?okoRd ",c GBqAb'6`)+Mt{'=ߵ: `}ٶϦo{6cm:&<_ݭxn_mPNٜN 45nЄ9K0@>;Ud0bl-OMF!RHWJ

证明:1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!
证明:1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!

证明:1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!
n/(n+1)!
=(n+1-1)/(n+1)!
=(n+1)/(n+1)!-1/(n+1)!
=
所以原式=1/1!-1/2!+1/2!-1/3!+……+1/n!-1/(n+1)!
=1-1/(n+1)!

用数学归纳法,
k=1时显然成立.
设k=n时,有(1/2!)+(2/3!)+……+n/(n+1)!=1-1/(n+1)!
当k=n+1时,
(1/2!)+(2/3!)+……+n/(n+1)!+(n+1)/(n+2)((n+1)!
=1-1/(n+1)!+(n+1)/(n+2)((n+1)!
=1-1/(n+2)!
命题得证