已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3(1)求an,bn(2)数列{an*bn}的前n项和Tn我第二小题不会做,求思路

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:13:46
已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3(1)求an,bn(2)数列{an*bn}的前n项和Tn我第二小题不会做,求思路
xVNA~&&V &٪1$24^V).Qۀ%$@¶;[zemv|9sδ͕ariڦֱ ڏZ_%q'n 'uuZ/A53V ZkiX`=qQ e*`tg͖ݭV-7)f9j7cQF3q!U 4!PKj"ȨPO8}h-ֲrIbrl# D[݇00l~BYYH32N #dQ(~=*ȁ %({q( l ʓ0$+]r"VvLkkO ݞ;w";QBϵrfܵo(l Vֆ0D;~kѱe$L0p%x3RI8!۟h

已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3(1)求an,bn(2)数列{an*bn}的前n项和Tn我第二小题不会做,求思路
已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3
(1)求an,bn
(2)数列{an*bn}的前n项和Tn
我第二小题不会做,求思路

已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3(1)求an,bn(2)数列{an*bn}的前n项和Tn我第二小题不会做,求思路
用错位相加减法.
具体步骤为:
an=4n-1 bn=2^(n-1)
Tn=an·bn=(4n-1)2^(n-1) 2Tn=(4n-1)2^n
T(n-1)=(4n-5)2^(n-2) 2 T(n-1)=(4n-5)2^(n-1)
T(n-2)=(4n-9)2^(n-3) 2 T(n-2)=(4n-9)2^(n-2)
..
T2=7·2¹ 2T2=7·2²
T1=3·2º 2T1=3·2¹
错位相减得
Tn=(4n-1)2^n-4(2^(n-1)+2^(n-2)+2^(n-3)+.+2¹)-3·2º
=(4n-1)2^n-4·(2^n-2)-3·2º
=(4n-5)2^n+5

(1)Sn= 2n^2+n                      (1)S(n-1) = 2(n-1)^2 + (n-1)  (2)(1) -(2)an= 2n^2+n - 2(n-1)^2 - (n-1)    =  4n-1an=4log(2)bn+34n-1 = 4log(2)bn+3log(2)bn = n-1bn = 2^(n-1)(2)anbn = (4n-1)(2^(n-1)) ...

全部展开

(1)Sn= 2n^2+n                      (1)S(n-1) = 2(n-1)^2 + (n-1)  (2)(1) -(2)an= 2n^2+n - 2(n-1)^2 - (n-1)    =  4n-1an=4log(2)bn+34n-1 = 4log(2)bn+3log(2)bn = n-1bn = 2^(n-1)(2)anbn = (4n-1)(2^(n-1))          = 4[n2^(n-1)] - 2^(n-1)consider[x^(n+1)-1]/(x-1) = 1+x+x^2+...+x^n[(x^(n+1)-1)/(x-1)]' = 1+2x+..+nx^(n-1)1+2x+..+nx^(n-1) = [ (x-1)(n+1)x^n) -(x^(n+1)-1) ]/(x-1)^2                           = [nx^(n+1)-(n+1)x^n+1]/(x-1)^2put x=21+2(2)+3(2)^2+..+n(2)^(n-1)=n2^(n+1)- (n+1)2^n +1summation anbn=summation {4[n2^(n-1)] - 2^(n-1)}= 4(n2^(n+1)- (n+1)2^n +1) - (2^n-1)=(4n).2^(n+1) - (4n+5).2^n +5

收起