在三角形ABC中,AD是它的角平分线,且BD=CD,DE垂直AB,DF垂直AC,垂足分别喂E,F ,求证EB=FC

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 14:00:21
在三角形ABC中,AD是它的角平分线,且BD=CD,DE垂直AB,DF垂直AC,垂足分别喂E,F ,求证EB=FC
xRmJ@JP I`z zVRl1*RP Rzl n*/yob%Q\(K1jrݞ\YMG8B=xYpYBFWu "[$yDP[2kEX~]֛ Y8Q>=-Ԡ1e0Uc::lg%P-+#W4dMENTd=:UHMi$U+ E{|8Ֆ pFcťqO.+qV'Py Y5 j "Q?'4

在三角形ABC中,AD是它的角平分线,且BD=CD,DE垂直AB,DF垂直AC,垂足分别喂E,F ,求证EB=FC
在三角形ABC中,AD是它的角平分线,且BD=CD,DE垂直AB,DF垂直AC,垂足分别喂E,F ,求证EB=FC

在三角形ABC中,AD是它的角平分线,且BD=CD,DE垂直AB,DF垂直AC,垂足分别喂E,F ,求证EB=FC
由题目得BD=CD 角BAD=角DAC AD=AD
得三角形ABD全等ADC
得AB=AC
又由角EAD=角DAF AD=AD 角ADE=角AFD=90度
得三角形AED全等AFD
得AE=AF
得BE=AB-AE=AC-AF=FC
即BE=FC

由AD是角平分线,BD=CD,得出三角形ABC为等腰三角形,所以AB=AC
又因为DE垂直AB,,DF垂直AC,所以AE=AF,
所以EB=FC