化简log2(1+2^0.5+3^0.5)+ log2(1+2^0.5-3^0.5)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:22:01
x){3t#
Cm8=Smc,I*'U~
y$
1DkB9`N,X-ny-TH3HW,g hk sL-8
C}#@1.I<;m[,~k2`CYH
F|ڿt$
(8T 3
化简log2(1+2^0.5+3^0.5)+ log2(1+2^0.5-3^0.5)
化简log2(1+2^0.5+3^0.5)+ log2(1+2^0.5-3^0.5)
化简log2(1+2^0.5+3^0.5)+ log2(1+2^0.5-3^0.5)
原式=log2[(1+√2+√3)(1+√2-√3)]
(1+√2+√3)(1+√2-√3)
=(1+√2)^2-(√3)^2
=1+2√2+2-3
=2√2
=2*2^(1/2)
=2^(3/2)
所以原式=log2[2^(3/2)]=3/2
=log2(1+2^0.5+3^0.5)(1+2^0.5-3^0.5)
=log2[(1+2^0.5)^2-(3^0.5)^2]
=log2[1+2+2根号2-3]
=log2(2根号2)
=3/2
化简log2(1+2^0.5+3^0.5)+ log2(1+2^0.5-3^0.5)
化简log2 1/2+log2 2/3+log2 3/4+.+log2 31/32
|[log2(x)]^2-3log2(x)+1|
0.5^(log2 3+3 )
log2 (x + 3) + log2(x + 2) = 1log2 (x + 3) + log2(x + 2) = 1
计算:(1)log2 (4^3*8^5);(2)log2 3+log2 6-log2 9
(log2 x)=(log2 x)^2-log2 x+2 (1) =(log2 x-0.5)^2+7/4 (2) 第一步式子 如何转化成第二步的
[log2 1]+[log2 2]+[log2 3]+[log2 4]+[log2 5]+...+[log2 1024]=?[x]表示不超过x的最大整数2为底 答案是8204
2^log2 (3) × log2 (1/8) + 2lg3
2^log2(3)×log2(1/8)+lg4+2lg5
求值:log2 (5/56)^(1/2)+log2 (14)-(1/2)log2 (35)=log2中2为底数=1/2[-2log2 (7)-3]+log2 (2)+log2 (7) 中的1/2[-2log2 (7)-3]是怎么得到的?
求解log2(3x)=log2(2x+1)
不等式log2(2x+3)>log2(x+1)的解集是
化简算式log2^√7/48+log2^12-1/2log2^42+1/2^log2^3
lg(1/4)-lg2(5) 2log5(10)+log5(0.25) 2log2(25)-3log2(64) log2(log2(16) )
【x】表示不超过实数x的最大整数,则【log2 1]+[log2 2]+[log2 3]+.+[log2 2012]等于?
根号下[(log2^3)^2-4log2^3+4]+log2^(1/3)
化简根号下[(log2^3)^2-4log2^3+4]+log2^(1/3)