已知数列{an}满足:a1=2,an+1=3an+3的n+1次方-2的n次方(n∈N+)设Cn=an+1/an(n∈N+),是否存在k∈N+,使得Cn≤Ck对一切正整数n均成立,并说明理由
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:52:01
xR]KA+,㲻oQD!IA"7Ȕ(B ($"ά&A/3s;c?{uj.|T5N?ނј"bL*I:B45wuQbM:):ݹH`<{i0=!(;mrjl<緶{Ұ&I-A FʘYFD[
6ሴLIXVbz`*f
@ 6e 8IߔwWYSEJb4!KǑoa .QSIHAl)4苦Y9RrBD%d#xk_Jkyyz%F٥I?73
已知数列{an}满足:a1=2,an+1=3an+3的n+1次方-2的n次方(n∈N+)设Cn=an+1/an(n∈N+),是否存在k∈N+,使得Cn≤Ck对一切正整数n均成立,并说明理由
已知数列{an}满足:a1=2,an+1=3an+3的n+1次方-2的n次方(n∈N+)
设Cn=an+1/an(n∈N+),是否存在k∈N+,使得Cn≤Ck对一切正整数n均成立,并说明理由
已知数列{an}满足:a1=2,an+1=3an+3的n+1次方-2的n次方(n∈N+)设Cn=an+1/an(n∈N+),是否存在k∈N+,使得Cn≤Ck对一切正整数n均成立,并说明理由
a(n+1)=3an+3^(n+1)-2^n
a(n+1)/3^(n+1) - an/3^n = -(1/3)(2/3)^n
an/3^n - a(n-1)/3^(n-1) = -(1/3)(2/3)^(n-1)
an/3^n - a1/3 = -[ 1-(2/3)^n]
an/3^n = -1/3+ (2/3)^n
an = 2^n - 3^(n-1)
cn = an + 1/an
let
f(x) = 2^x -3^(x-1) + 1/[2^x -3^(x-1)]
f'(x)=(ln2).2^x - (ln3).3^(x-1) - [ (ln2).2^x - (ln3).3^(x-1) ]/1/[2^x -3^(x-1)]^2
f'(x) =1 )
f(1) = 2
f(2) =2
f(3) = -2
{cn} 是递减数列
ie
k =1 or 2
cn
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
已知数列满足a1=1 ,an+1+2an=2 求an
已知数列an满足条件a1=-2 an+1=2an+1则a5
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列{an}满足a1=1,an+1·an=2^n 则s2012
已知数列{an}满足An+1=2^nAn,且A1=1,则通项an
已知数列{an}满足a1=1/2,sn=n^2an,求通项an
已知数列{an},满足a1=1/2,Sn=n²×an,求an
已知数列an满足a1=1/2 sn=n平方×an 求an
已知数列An满足 A1=1/2 Sn=N²An 求An
已知数列an满足an+1=nan,a1=2,求an通项
已知数列an满足a1=1 Sn=2an+n 求an
已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列
已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列
已知数列{an}满足a1=1/2,an+1=3an+1,求数列{an}通项公式
已知数列an满足a1=1,1/an+1=根号1/an^2+2,an>0,求an
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an