证明数列 1,1/2,1/3,1/4.1,1/10,1/11,1/12..1,1/100,1/101,1/102..1,1/1000,1/1001..的极限不是1.为省略号,如何严谨的证出它在n趋近无穷大时极限不是1,最好给出两种证法,一从它没有极限的角度,二从它的极限不

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:43:00
证明数列 1,1/2,1/3,1/4.1,1/10,1/11,1/12..1,1/100,1/101,1/102..1,1/1000,1/1001..的极限不是1.为省略号,如何严谨的证出它在n趋近无穷大时极限不是1,最好给出两种证法,一从它没有极限的角度,二从它的极限不
xUrV~K %fmWpgҙ8ә.`9` 'H8 $.oHt+?:^I/$)fnA"$|Q_%CqQ`7fXaQbnkíN$nyX:Qö FZ زJcN{TaHsi N.T#Z:#knh_c_?x+"n@aBohMYo@ɖÿrVw9$攙:l9>m\r/X;P@;n{XI*DcƐk Wl2b9E-8<0b!a$cT_b}b]\zG2J1vKHzA18J *l$֙ @L(̋|w˔g8o=*EP>p`CK*U]w Qvt?6\jMԑ>#i0ó=_G jOl 0<<+֏֟-LwxjcZ?ez H@.3̰v/@㊽ȮeRA'$Q}Dąo8s;أ2˕*;PTǍYϝOg73w<й\}k2} ۘfgfY9ǩBI‹ty5P>TW^gJ%L>KD"T:H'oe%}Qֳ.Ҍ7O.^F, ^@gTJ\N=C>}<#av@ȋ f:AG mWX (Xi"DjG;Xؿ61MQ yfSG3vܹ2

证明数列 1,1/2,1/3,1/4.1,1/10,1/11,1/12..1,1/100,1/101,1/102..1,1/1000,1/1001..的极限不是1.为省略号,如何严谨的证出它在n趋近无穷大时极限不是1,最好给出两种证法,一从它没有极限的角度,二从它的极限不
证明数列 1,1/2,1/3,1/4.1,1/10,1/11,1/12..1,1/100,1/101,1/102..1,1/1000,1/1001..的极限不是1
.为省略号,如何严谨的证出它在n趋近无穷大时极限不是1,最好给出两种证法,一从它没有极限的角度,二从它的极限不是1的角度,
要具体思路,文字叙述。不理解“可以对该函数在实数范围内扩充,由于函数在n->无穷大的时候存在跳跃点,因此极限不存在。

证明数列 1,1/2,1/3,1/4.1,1/10,1/11,1/12..1,1/100,1/101,1/102..1,1/1000,1/1001..的极限不是1.为省略号,如何严谨的证出它在n趋近无穷大时极限不是1,最好给出两种证法,一从它没有极限的角度,二从它的极限不
上极限是1,下极限是0,sup!=inf,极限不存在
具体来讲,如果数列中的子列有确定的极限,那么这个子列的极限如果确定且唯一,那么极限存在,但是题目中的两个子列1,1,1,1.以及1,1/2,1/3,1/4.他们的极限分别是1和0,当然极限不存在了
我是数学系的,
另外2L显然搞错了,楼主问的数列不是级数,如果级数的话当然是发散的,还有就是数列其实在Ceraro意义下收敛到0的,但我们一般不讨论这种情况了

???如果这是一个数列极限问题,显然极限不等于1而等于0,如果是一个级数问题应该这样证:
要证∑1/n极限不存在。
由柯西准则
取explon=1/2,对任意N,取m>N,取P=2m,则m到m+p项之和为1/m+....+1/(m+p)>m/2m=1/2,既得∑1/n不收敛,即极限不存在

若a(n)的极限为δ,则 |a(n)-δ| < ε 必须严格成立,只要有一个不满足,则极限不成立,但是由于该数列并没有严格的解析表达式,要证明它不存在极限是比较困难的,可以对该函数在实数范围内扩充,由于函数在n->无穷大的时候存在跳跃点,因此极限不存在。...

全部展开

若a(n)的极限为δ,则 |a(n)-δ| < ε 必须严格成立,只要有一个不满足,则极限不成立,但是由于该数列并没有严格的解析表达式,要证明它不存在极限是比较困难的,可以对该函数在实数范围内扩充,由于函数在n->无穷大的时候存在跳跃点,因此极限不存在。

收起