1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:57:40
1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值
x)3.I;QPLk=elcFq&PD;9FM#]Csu`Z6I*ҧ1v6Ts)4fik@Mӄ}V J" ToeقH}#g Ov/iFqZqia4mA! l#R]CMU3E&cP X$.6H^MDP$A G}xc4B m ăqF`Zц- 1]#3}#{z 1kVM

1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值
1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值

1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值
由 (1+tanα)/(1-tanα)=3+2√2 可得:
tanα=(2+2√2)/(4+2√2)=√2/2
所以:
[(sinα+cosα)²-1]/(cotα-sinαcosα)
=(sin²α+cos²α+2sinαcosα-1)/(cotα-sinαcosα)
=2sinαcosα/(cotα-sinαcosα)
=2sin²αcosα/(sinαcotα-sin²αcosα)
=2sin²αcosα/(cosα-sin²αcosα)
=2sin²α/(1-sin²α)
=2sin²α/cos²α
=2tan²α
=2(√2/2)²
=1

(1-tanα)/(1+tanα)=3+2√2 (1-tanα)/(1+tanα)=2+2√2+1=sinα/[cosα*(cosα)^2]=tanα*[1+(tanα)^2]=-26/27,所以(