通分1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3) 3/(x+1)(x+3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 17:21:19
通分1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3) 3/(x+1)(x+3)
xO;0 JVj`JsH(%# ܏[qC `~.v^,긫"TFAF[F*u25:?o 0xG]1 ۲}nx$Ŧ.MޜJEHBw^A NS31>ǩ+E{

通分1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3) 3/(x+1)(x+3)
通分1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3) 3/(x+1)(x+3)

通分1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3) 3/(x+1)(x+3)
1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3)
=1/(x+1)(x+2) +1/(x+2)(x+3) + 1/(x+1)(x+3)
=[x+3+ x+1+x+2]/[(x+1)(x+2)(x+3)]
=(3x+6)/[(x+1)(x+2)(x+3)]
=3/[(x+1)(x+3)]

1/(x^2+3x+2) +1/(x^2+5x+6) + 1/(x^2+4x+3)
=1/(x+1)(x+2) +1/(x+2)(x+3)+1/(x+1)(x+3)
=((x+3)+(x+1)+(x+2))/((x+1)(x+2)(x+3))
=(3x+6)/((x+1)(x+2)(x+3))
=(3*(x+2))/((x+1)(x+2)(x+3))
=3/((x+1)(x+3))