利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).一楼怎么说明(2n+2)(2n+1)/a^(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:27:15
利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).一楼怎么说明(2n+2)(2n+1)/a^(n+1)
xRAN@Ju&:Mz.`$);@11*$BA !B14A.33-+t10ny1 ܅Q8R6|]"W?i>m)(`FK*\:R_*L1@|ꀣj iT ~3Kڪ݁VN˿8w"QIfude".ik$J)$5+7xsff+idfۊ(Vtvvɢ杍hgwAC~F ԄG^yPK,i[baq{`b,lLbɋrvTp<7맸@-^

利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).一楼怎么说明(2n+2)(2n+1)/a^(n+1)
利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).
一楼怎么说明(2n+2)(2n+1)/a^(n+1)

利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).一楼怎么说明(2n+2)(2n+1)/a^(n+1)
An=(2n)!/a^(n!)
A1=2/a
易知An>0

A(n+1)/An=(2n+2)(2n+1)/a^(n+1)
存在N使得当n>N(足够大时)
A(n+1)/An=(2n+2)(2n+1)/a^(n+1)1 => a=1+b
a^(n+1)=(1+b)^(n+1)=1+b*(n+1)+b^2*(n+1)n/2+b^3*(n+1)n(n-1)/6+...
(2n+2)(2n+1)/[b^3*(n+1)n(n-1)]->0
那么An有下界0,且当n>N时An递减
故An收敛.
又lim A(n+1)/An=lim (2n+2)(2n+1)/a^(n+1)=0
知An的下确界必为0,不然lim A(n+1)/An=1

An=(2n)!/a^(n!)
A1=2/a
易知An>0