函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,且当x属于[0,1)时,f(x)=log2(2-x),则f(2010)+f(2011)的值是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:17:36
函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,且当x属于[0,1)时,f(x)=log2(2-x),则f(2010)+f(2011)的值是多少
xRJ@$kv#zѠ  Vk bRk7=ܝiZ)of޼y3'D;/GY p'J)EmeI_Wi'E͛f0!KtnJ _ RzLĨoC?gAѺ#. cXڂX  Lr0uK )ݏ?kV-h7G VdN=w. MX 6a`\u4(ef-@zsDus骫Bz]%@3K[Ĥ.rpSҔ{

函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,且当x属于[0,1)时,f(x)=log2(2-x),则f(2010)+f(2011)的值是多少
函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,且当x属于[0,1)时,f(x)=log2(2-x),则f(2010)+f(2011)
的值是多少

函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,且当x属于[0,1)时,f(x)=log2(2-x),则f(2010)+f(2011)的值是多少
由题意 f(x+1)=-f(-x+1),f(x-1)=-f(-x-1),则
f[(x+2)-1]=f[-(x+2)-1]=-f(-x-3)=-f(-x+1),即f(-x-3)=f(-x+1),
所以f(x)的周期为4,
f(2010)+f(2011)=f(4x502+2)+f(4x503-1)
=f(2)+f(-1),
f(2)=f(1+1)=f(1-1)=f(0)=log2 2=1,
f(-1)=f(0-1)=-f(-0-1)=-f(-1),则f(-1)=0,
所以f(2010)+f(2011)=f(-1)+f(2)=0+1=1.