1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:01:34
x)3IӨдM/0=ߠomTgPalcӳ9
O7?[t7ػٴWt$S$;j
9`iQ ie*c(37(PqAb!6 :#ap% {dR4?|ēh>T$ف N
1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
f(x)=cos(2x-π/3)+2sin^2 x
=cos2xcosπ/3+sin2xsinπ/3+1-cos2x
=1/2cos2x+sin2xsinπ/3+1-cos2x
=-1/2cos2x+sin2xsin(π-2π/3)+1
=cos2π/3cos2x+sin2xsin2π/3+1
=cos(2x-2π/3)+1
所以最小正周期是π,
对称轴方程是x=π/3