求和Sn=1/(1*4)+1/(2*7)+.+1/n*(3n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 20:51:03
求和Sn=1/(1*4)+1/(2*7)+.+1/n*(3n+1)
x1@EòYe%΀0+:)<D<{-fgϼ8eɱюq!}w.]XwM]&?h.t(4TN11[XHϳ@afVߛVN.bM;]u˜¹}+1yWW\k9ԐMBj]ՐLڏ\qbrf\

求和Sn=1/(1*4)+1/(2*7)+.+1/n*(3n+1)
求和Sn=1/(1*4)+1/(2*7)+.+1/n*(3n+1)

求和Sn=1/(1*4)+1/(2*7)+.+1/n*(3n+1)
1/n(3n+1)=3[(3n+1-3n)/3n(3n+1)]=3[1/3n-1/(3n+1)]
Sn=3[(1/3+1/6+1/9+...+1/3n)-(1/4+1/7+1/10+...1/(3n+1))]
定义ψ(k)=lim[n→∞](lnn-(1/k+1/(k+1)+...+1/n))
则Sn=ψ(k+1)-ψ(k+4/3)+3-π√3/6-3ln3/2