n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 11:15:57
x)7225L5,36F/7\ƦzlХ_`gCm/f~OPn~tF6P4Ҍ+S ["%A"s=Hƀ:^J?aZ20D?l~CyBl2Ju<_\g
y vM;
n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
通项为(n+1-k)/[k*(k+1)*(k+2)]
=(n+1)/[k*(k+1)*(k+2)]-1/[(k+1)*(k+2)]
=(n+1)/[2k*(k+1)]-(n+1)/[2(k+1)*(k+2)]-1/(k+1)+1/(k+2)
所以n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)
=(n+1)/[2*1*(1+1)]-(n+1)/[2(n+1)*(n+2)]-1/(1+1)+1/(n+2)
=(n-1)/4+1/[2(n+2)]