高数之麦克劳林求函数y=tanx的二阶麦克劳林公式tanx=x+[(1+2sin^2(θx))/3cos^4(θx)]* x^3 (0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:22:05
高数之麦克劳林求函数y=tanx的二阶麦克劳林公式tanx=x+[(1+2sin^2(θx))/3cos^4(θx)]* x^3 (0
xRj@}ald&$썾EidLfQBx!QA E-Cfu NEx997M;;Unw?L>]n}kޘďw>甛o .ґ&?Ɏ IV] 7؀=k5}awϕx@Q=E,KMceT*17 6jPWտ7d((JmmuWmםnO:*@"f_dkg=N"CG5Ax1UӃ˭QuaѰ}CnßoOut} XQx{^2g $͓lѕAI ^M9>k#tm13-Z !Y:Q܀v#s8H:##&4Ehcchp!QBY B,E-QI0 aӰ.6gXY`

高数之麦克劳林求函数y=tanx的二阶麦克劳林公式tanx=x+[(1+2sin^2(θx))/3cos^4(θx)]* x^3 (0
高数之麦克劳林
求函数y=tanx的二阶麦克劳林公式
tanx=x+[(1+2sin^2(θx))/3cos^4(θx)]* x^3 (0

高数之麦克劳林求函数y=tanx的二阶麦克劳林公式tanx=x+[(1+2sin^2(θx))/3cos^4(θx)]* x^3 (0
tanx = sinx/cosx
=(x-x^3/6+x^5/120+o(x^5))/(1-[x^2/2-x^4/24+o(x^4)])
=(x-x^3/6+x^5/120+o(x^5))*{(1+ [x^2/2+x^4/24+o(x^4)]+[x^2/2+x^4/24+o(x^4)]^2+o(x^4)}
=(x-x^3/6+x^5/120+o(x^5))*{(1+ [x^2/2+x^4/24+o(x^4)]+x^4/4+o(x^4))}
=(x-x^3/6+x^5/120+o(x^5))*{(1+ x^2/2+7x^4/24+o(x^4)}
= x + x^3/3 + 2/15*x^5 + o(x^5)
① tanx = x + o(x^2)
② tanx = x + x^3/3 + o(x^4)
③ tanx = x + x^3/3 + 2/15*x^5 + o(x^6) (∵奇函数)

见图