关于隐函数求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 20:08:36
xSn@HUXɼl_TuMB$AHeIJ 6|MS؎[B>νsΕN2_vw7?/j}z9A"팟]NC%POы|l==z_`I*"f(<-80 0!0L(Md3if+V,6J0-Q;q Kr
4P"bNlG.\hvi9װ DE/%&^1#ګQL =t rC įaD]zf گmv{Aҥu+e%#ǿ&h1VuR'Nðv#h
U7V|Yv{[&[1*\W֭emģ*w돫zwQ(\84$`FRf5
LjH(VYXZifa!4[s'CER:DG:C#wn~rj
关于隐函数求导
关于隐函数求导
关于隐函数求导
arc tan (y/x)=1/2 *ln(x^2 +y^2)
[1/x *(dy /dx)+y *(-1 /x^2)] / [1+(y/x) ^2] =(2x+2y * dy /dx) * 1/ 2* 1/ (y^2+x^2)
x dy /dx -y =x+ y*dy/dx
(x-y) dy /dx =y +x
dy /dx =(x+y) / (x-y)
arctan(y/x)=0.5ln(x^2+y^2)
两边对x求导:
1/(1+y^2/x^2)* (y/x)'=0.5/(x^2+y^2)*(2x+2yy')
1/(1+y^2/x^2)*(y'x-y)/x^2= (x+yy')/(x^2+y^2)
(y'x-y)/(x^2+y^2)=(x+yy')/(x^2+y^2)
y'x-y=x+yy'
得:y'=(x+y)/(x-y)
见图