求抛物线y^2=2px的焦点F作一条直线与抛物线相交于P1,P2两点,求证:以线段P1P2为直径的圆与抛物线的准线相切

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:38:18
求抛物线y^2=2px的焦点F作一条直线与抛物线相交于P1,P2两点,求证:以线段P1P2为直径的圆与抛物线的准线相切
x͑N@_#$K=G=r20@ ҏ'OH&>no݆ w=71I`Ar_h _;L:xYB>lN_qH

求抛物线y^2=2px的焦点F作一条直线与抛物线相交于P1,P2两点,求证:以线段P1P2为直径的圆与抛物线的准线相切
求抛物线y^2=2px的焦点F作一条直线与抛物线相交于P1,P2两点,求证:以线段P1P2为直径的圆与抛物线的准线相切

求抛物线y^2=2px的焦点F作一条直线与抛物线相交于P1,P2两点,求证:以线段P1P2为直径的圆与抛物线的准线相切
y^2=2px 焦点(p/2,0),x=p/2,y=±p,过焦点的弦为直径,
所以半径为|p|,准线x=-p/2,圆心即为焦点,所以圆心到准线距离为
|p/2-(-p/2)|=|p|,等于半径,所以以抛物线y^2=2px过焦点的弦为直径的圆必与此抛物线的准线相切

把图画出来很好解
准线x=-p/2
过P1,P2做准线的垂线,再连接P1X,P2X