求详解,一步步来,对于我这种数学渣渣1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________2.函数f(x)=cos2x-6cosx+1的值域是____________3.已知π

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:50:30
求详解,一步步来,对于我这种数学渣渣1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________2.函数f(x)=cos2x-6cosx+1的值域是____________3.已知π
xRJ@A:t&Zl+FdD0].*5XP:Iww^5ŝ ɜ{9$SkԳ`ڻ> ʺv=O^Nlq?g{ aK⩟;i2a\ƣa }3j&ǀx[{ʹ2Z$90u,$yB"I4CUo<3(m_S? ~TQ qi^?4?O1!jȲHNdI64&D*8et!42ZMy9z8`Wg k{P tG{*QQ۠EK3LhљI(\lЊoC,.յ4aaewQļW7vB7p8pVHkj5U0#qWWIrU"Fݺ_D

求详解,一步步来,对于我这种数学渣渣1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________2.函数f(x)=cos2x-6cosx+1的值域是____________3.已知π
求详解,一步步来,对于我这种数学渣渣
1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________
2.函数f(x)=cos2x-6cosx+1的值域是____________
3.已知π

求详解,一步步来,对于我这种数学渣渣1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________2.函数f(x)=cos2x-6cosx+1的值域是____________3.已知π
由sinβ=-12/13且β∈(-π/2,0),得cosβ = 5/13
由α∈(π/2,π),β∈(-π/2,0),得2α-β∈(π,5π/2)
又sin(2α-β) = 3/5 > 0,所以2α-β∈(2π,5π/2)
sin(2α-β) = sin(2α)cosβ - cos(2α)sinβ = 5/13sin(2α) + 12/13cos(2α) = 3/5
cos(2α-β) = cos(2α)cosβ + sin(2α)sinβ = 5/13cos(2α) - 12/13sin(2α) = 4/5
解得cos(2α) = 56/65
sin²α = (1/2)(1 - cos(2α)) = 9 / 130
sinα = 3/√130
f(x)=(2cos²x-1)-6cosx+1
=2cos²x-6cosx
=2(cosx-3/2)²-9/2
-1