已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:06:58
已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z
x){}K + 5*4m t +A ȯB

已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z
已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z

已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z
从1/x+1/(y+z)=1/2,
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2