如图,在等腰RT△ABC中,∠ABC=90° ,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证BD=CG.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:44:59
如图,在等腰RT△ABC中,∠ABC=90° ,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证BD=CG.
xT_OP* OcJrm=oT`2O0l( "h  0eWv+ ƃɒ%CvtͽjkwIdW6ASW}guuqpdQ9KfGZ}~E)OF];n\6.!IP!isXn`U!z(&dal3Sx,4i*==ABB1?15Q eByȜ^ YcBx1Q ( bhXgFXFԌII93aa13)H,2-3n1+sh"3.Cź)bX2DTY͜$h.HH"aPX:ꕣi QaJ|=O< hL:EFPHK#gKm4τ;^%„k]#\+L'pSRBhKR\?6^sW i>85r`Wi[{[8Y- @M:J3~k1F,V=@2&A:Q6U(su8@ AToH7#{7N={v~7w.~{"`1tzwA(D7宏\Zwk_ttE}&nDha Voܒ|:

如图,在等腰RT△ABC中,∠ABC=90° ,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证BD=CG.
如图,在等腰RT△ABC中,∠ABC=90° ,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证BD=CG.

如图,在等腰RT△ABC中,∠ABC=90° ,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证BD=CG.
证明:
∵AE⊥CD于E
∴∠EAC+∠ECA=90°=∠ECA+∠FCB
∴∠EAC=∠FCB
∵∠BFC=∠CEA=90°,AC=BC
∴△AEC≌△CFB
∴EC=FB
又∵∠BDF=∠CDH,∠CDH+∠DCG=∠DCG+∠CGE=90°
∴∠CGE=∠BDF
∴△CGE≌△BDF
∴BD=CG

图画错了 ,要么就是题错了。∠ABC=90°?
∵BF⊥CD AE⊥CD
∴AE∥BF
∴∠FBD=∠GAH=∠ECG
∴∠FBC=∠FBD+45°=∠ECG+45°=∠ECA
∴∠BCD=∠CAG 又∠DBC=45°=∠GCA BC=CA
∴△BCD≌△CAG
∴BD=CG

字母打错了吧。。。

在等腰Rt△ABC中,AC=BC,∠CAB=∠CBA=45°;
CH⊥AB,∠ACH=∠BCH=45°;
BF⊥CD,AE⊥CD,
∠GAH+∠CAG=∠CAB=45°;
∠CAG=45°-∠GAH;
∠AGH=∠CGE,[对顶角];
∠GAH=90°-∠AGH=90°-∠CGE=∠GCE;
∠BCD=∠BCH-∠GCE=45°-∠GCE;<...

全部展开

在等腰Rt△ABC中,AC=BC,∠CAB=∠CBA=45°;
CH⊥AB,∠ACH=∠BCH=45°;
BF⊥CD,AE⊥CD,
∠GAH+∠CAG=∠CAB=45°;
∠CAG=45°-∠GAH;
∠AGH=∠CGE,[对顶角];
∠GAH=90°-∠AGH=90°-∠CGE=∠GCE;
∠BCD=∠BCH-∠GCE=45°-∠GCE;
所以∠CAG=∠BCD,
AC=BC,
∠ACH=∠ACG=45°=∠CBD,
△AGC≌△CDB,[ASA]
CG=BD.

收起