若椭圆3x²+4y²=12上存在两个不同的点A.B关于直线2x-y+m=0对称,试求m的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:24:54
若椭圆3x²+4y²=12上存在两个不同的点A.B关于直线2x-y+m=0对称,试求m的取值范围
xRMK@+A6dcv7 v @HP, H0, ?,"A$&Vt~fc: f?`“QMFu">. ۂ ̴<$ $ /5ֹ.t4w5 \h/v6# 9ܦKzI?οvK,& 'rSruZ+±RvcJGԤIĖ$ DN\ $ f%'W.tL6>LJ?GMUtu*Ս\n_p

若椭圆3x²+4y²=12上存在两个不同的点A.B关于直线2x-y+m=0对称,试求m的取值范围
若椭圆3x²+4y²=12上存在两个不同的点A.B关于直线2x-y+m=0对称,试求m的取值范围

若椭圆3x²+4y²=12上存在两个不同的点A.B关于直线2x-y+m=0对称,试求m的取值范围
用点差法.设A(x1,y1),B(x2,y2),中点为M(x0,y0),则
3x1²+4y1²=12 (1)
3x2²+4y2²=12 (2)
(2)-(1)得
3(x2-x1)(x1+x2)+4(y2-y1)(y1+y2)=0
所以 AB的斜率k=(y2-y1)/(x2-x1)=3(x1+x2)/[4(y1+y2)]=3x0/(4y0)
由于直线2x-y+m=0的斜率为2,所以 k=-1/2
即-1/2=3x0/(4y0),
3x0+2y0=0 (3)
又M在直线 2x-y+m=0上,所以
2x0-y0+m=0 (4)
由(3)(4),得
x0=-2m/7,y0=3m/7
因为M在椭圆内,所以 3x0²+4y0²