在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴的非负半轴重合,终边与单位圆交于点P(x,y),若α属于【л/8,5л/12】,则(x+y)^2的取值范围是л是Pai=360º

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:58:45
在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴的非负半轴重合,终边与单位圆交于点P(x,y),若α属于【л/8,5л/12】,则(x+y)^2的取值范围是л是Pai=360º
xݑMNPǯBbb0<(-JHl]A"kjԠ|J1 @+#1 ̼?Pamtto!Eg5xGi L~:sPi$ݲ*3

在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴的非负半轴重合,终边与单位圆交于点P(x,y),若α属于【л/8,5л/12】,则(x+y)^2的取值范围是л是Pai=360º
在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴的非负半轴重合,终边与单位圆交于点P(x,y),若α属于【л/8,5л/12】,则(x+y)^2的取值范围是
л是Pai=360º

在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴的非负半轴重合,终边与单位圆交于点P(x,y),若α属于【л/8,5л/12】,则(x+y)^2的取值范围是л是Pai=360º
由题x=cosα,y=sinα
(x+y)^2=(cosα)^2+(sinα)^2+2sinαcosα=1+sin2α
因为α属于【л/8,5л/12】2α属于【л/4,5л/6】
sin2α属于【1/2,1】
所以(x+y)^2属于【3/2,2】
- - л是180度好吧...

在平面直角坐标系xOy中,已知角α的顶点为原点O,其始边与x轴正半轴重合,终边过点(3,m),且sinα=-4/5,则 在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程为? 在平面直角坐标系xOy中,已知三角形ABC的顶点A(-6,0)和C(6,0)若顶点B在双曲线x方分之25-y方分之11在平面直角坐标系xOy中,已知三角形ABC的顶点A(-6,0)和C(6,0),若顶点B在双曲线x方分之25-y 在平面直角坐标系xoy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面 在平面直角坐标系xOy中,已知二次函数y=ax^2+bx+c(a≠0)的图象顶点为D…… 在平面直角坐标系xoy中,已知三角形ABC的定点A(0,-5),B(0,5),顶点C在双曲线在平面直角坐标系xOy中,已知三角形ABC的定点A(0,-5),B(0,5),顶点C在双曲线y^2/9-x^2/16=1上,则sinA-sinB/sinC为 如图在平面直角坐标系xoy中,三角形ABC的两个定点AB在X轴上如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物 在平面内直角坐标系xoy中,角 α,β(0 在平面内直角坐标系xoy中,角 α,β(0 怎么写,这种题的思路在平面内直角坐标系xoy中,角 α,β(0 怎么写,这种题的思路在平面内直角坐标系xoy中,角 α,β(0 如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1213 如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴.如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴,y轴的正半轴上,CB∥OA,OC=4,BC=3,OA=5, 在平面直角坐标系xOy中,已知三角形ABC的顶点A(-6.0)和C(6.0),若顶点B在双曲线x/25-y/11=1的左支上,则(sinA-sinB)/sinB等于 在平面直角坐标系xOy中,已知△abc的顶点A(-5,0)和C(5,0)顶点B在椭圆x^2/36+y^2/16=1上,则(sinA+sinC)/sinB的值为? 在平面直角坐标系xOY中已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x^2/25+y^2/9=1上则(sinA+sinC)/sinB= 在平面直角坐标系xOy中,已知三角形ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x平方/25+y平方/9=1上,则(sinA+sinC)/sinB=? 在平面直角坐标系xOY中已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x^2/25+y^2/9=1上则(sinA+sinC)/sinB=