{an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:41:57
{an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列
xRJ@ӐqGJ ]Eb%ERFP 5}Я$q_LS[]v69sLno2HgSۈY23nNroWroVYuہF"u8~|~"=s4)5

{an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列
{an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列

{an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列
设{bn}公差为d
bn=(a1+2a2+.+nan)/(1+2+.+n)=(a1+2a2+.+nan)/[n(n+1)/2]
[n(n+1)/2]bn=a1+2a2+.+(n-1)a(n-1)+nan-------------(1)
[n(n-1)/2]b(n-1)=a1+2a2+.+nan-----------------------(2)
其中a(n-1)和b(n-1)分别表示{an},{bn}的第n-1项.
(1)-(2)得
[n(n+1)/2]bn-[n(n-1)/2]b(n-1)=nan
即:(n^2/2)[bn-b(n-1)]+(n/2)[bn+b(n-1)]=nan
所以an=(n/2)d+(1/2)[bn+b(n-1)]
a(n+1)-an=[(n+1)/2]d+(1/2)[b(n+1)+bn]-(n/2)d-(1/2)[bn+b(n-1)]
=(1/2)d+(1/2)[b(n+1)-b(n-1)]
=(1/2)d+(1/2)*2d
=(3/2)d
所以a(n+1)-an为常数
所以{an}是等差数列

设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式 设数列{an},{bn}满足a1=1,b1=0且(高二数学,a(n+1)=2an+3bn且b(n+1)=an+2bn.(1)求证:{an+根号3bn}和{an-根号3bn}都是等比数列并求其公比;(2)求{an},{bn}的通项公式(n均为正整数)是(根号3)bn an是等差数列,bn满足bn=an*a(n+1)*a(n+2),bn的前n项和是Sn,若a1=d,用数学归纳法证明Sn=bn*a(n+3)/4d. 正项数列an满足:a1=3/2,a(n+1)=3an/2an+3数列bn满足bn·an=3(1-1/2^n),求bn的前n和 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn 数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为 已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*求数列bn的通项公式()中的都为下标 【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前...【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前n项和Tn 两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的 {an}和{bn}满足bn=(a1+2a2+.+nan)/(1+2+.+n) 求证:(1)若{bn}为等差数列,{an}也是等差数列 已知数列{an}{bn}满足:a1=1,a2=a(a为常数),且bn=an*an+1,其中n=1,2,3……(1)若已知数列{an}{bn}满足:a1=1,a2=a(a为常数),且bn=an*an+1,其中n=1,2,3{an}是等比数列,试求{bn}的前n项和sn的公式;(2)当{bn}是等比 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式 急~求一道高三数学题在数列{an}和{bn}中,满足a1=2,b1=1,a(n+1)=2an-6bn,b(n+1)=an+7bn. 求数列an和bn的通项公式an和bn;求数列{nbn}的前n项和 在数列{an}和{bn}中,an>0,bn>0,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,a1=1,b1=2,求an/bn. 数列{an}的前n项和为Sn,a1=1,a(n+1)-an-1=0,数列{bn}满足b1=2,anb(n+1)=2a(n+1)bn.(1)求S200(2)求bn