定积分∫ (2到-2)[(4-x^2)^(1/2)*(sinx+1)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:15:19
定积分∫ (2到-2)[(4-x^2)^(1/2)*(sinx+1)]dx
x){nv=X~Oӎ FtF9&q vFqf^flJMR>z l(o=@F:F ` P ) 8LɎ]iXtiϦnydR (@FE@@1m cTa DD ,<;P@.

定积分∫ (2到-2)[(4-x^2)^(1/2)*(sinx+1)]dx
定积分∫ (2到-2)[(4-x^2)^(1/2)*(sinx+1)]dx

定积分∫ (2到-2)[(4-x^2)^(1/2)*(sinx+1)]dx
原式=∫(2,-2) (4-x^2)^(1/2)*sinxdx + ∫(2,-2) (4-x^2)^(1/2)dx
因为f(x)=(4-x^2)^(1/2)*sinx是奇函数,所以∫(2,-2) (4-x^2)^(1/2)*sinxdx=0
所以原式=∫(2,-2) (4-x^2)^(1/2)dx
=2arcsin(x/2)+x/2*√(4-x^2)|(2,-2)
=-π-π
=-2π