求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:43:34
求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]
x){Ɏӟk|9sBNfnޣI:Ek<꘥gmkcjji$铯YΆBXl§mONx6=l6IѸLdW 6>n)p5y 8#]ZbG!i]l6Bѩmks>PP3&6CG65Z!f  fa= A"_F 1!3

求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]
求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]

求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]
两次分子有理化:
n→∞时n^3[√(n^2+2)-2√(n^2+1)+n]
=n^3[√(n^2+2)-2√(n^2+1)+n][√(n^2+2)+2√(n^2+1)+n]/[√(n^2+2)+2√(n^2+1)+n]
=n^3{[√(n^2+n)+n]^2-4(n^2+1)}/[√(n^2+2)+2√(n^2+1)+n]
=n^3[2n√(n^2+n)-2n^2+n-4]/[√(n^2+2)+2√(n^2+1)+n]
=n^3[2√(n^2+n)-2n+1-4/n]/[√(1+2/n^2)+2√(1+1/n^2)+1]
→(1/4)n^3[2√(n^2+n)-2n+1]
=(1/4)n^3[2√(n^2+n)-2n+1][2√(n^2+n)+2n-1]/[2√(n^2+n)+2n-1]
=(1/4)n^3[4(n^2+n)-(2n-1)^2]/[2√(n^2+n)+2n-1]
=(1/4)n^3(8n-1)/[2√(n^2+n)+2n-1]
→∞.