数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 18:39:21
数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列
xŒJ0_% H6 QHszeaxZBYi{Wi<%|3foE4R&y2zj Uj|9';d=i#2r4No6yDLyaxTC~(jܑjPi K-ls ;8hSH-AȎW: zQ5Fz0,4E|k2+ڢRqca|0L8]a]sa:yۆ18k<ۛawxpzαb1էjXk

数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列
数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列

数列{an}中,a1=-5,an=(5a(n-1))/(6 - a(n-1))(n大于等于2) 若cn=an/ (an 减1 ) 证明cn为等比数列
∵,an=(5a(n-1))/(6 - a(n-1))
∴a(n+1)=5an/(6-an)
∵cn=an/(an-1)
∴c(n+1)=a(n+1)/[a(n+1)-1]
∴c(n+1)/cn
= a(n+1)/[a(n+1)-1]* (an-1)/an
=[5an/(6-an)]/ [5an/(6-an)-1]*(an-1)/an
=5an/(5an-6+an)*(an-1)/an
=5/6
∴{cn}为等比数列
以下可以求an
{cn}等比,c1=a1/(a1-1)=-5/(-6)=5/6
cn=(5/6)^n
(an-1)/an=1/cn
1-1/an=(6/5)^n
1-(6/5)^n=1/an
an=1/[1-(6/5)^n]=5ⁿ/(5ⁿ-6ⁿ)