在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程是长轴最短

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:19:05
在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程是长轴最短
xVKoV+2Žc"HxU$/[UDFt $@f3y11-$Q5dy2UBa]RH;|D7hyrzooڼݷ}{DKGV7l1e_kXѕAN OV\)[Zٛ÷1o3gXv>V8ʮd[m~۾_L}x</7aYK`Q={';%Z:W}:zLR^Qkkr H]I\ v^]fW>>rvx -vak8mQW1ns^V+v*mqA6L A]]5XчcOիڄ珓7~* qgeJ&$d:ؽeyO@Ȟse )U1)vnNc-4@Id5ء2oemP䙪@ kIYHCMR@;@ڗVo>B`RBx਄QWPHh"Z(FЍJe-'4AIX4]<#&0I  83*y/4SRL4),Ih_t uXv%+Anjs0aE .IESx"uM ;]WTi̓O|y"Ԋ*/A! P$R\nsr#\ﵨw?}F

在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程是长轴最短
在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程
是长轴最短

在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程是长轴最短
椭圆越短,就是椭圆越扁,也就是离心率e越接近于1
e=c/a a 越小,e就越大,所以本题就是在直线上找一点M,使其到F1,F2点的距离最短.
做焦点F1或者F2关于直线L的对称点P,然后连接F2P或者F1P,所得的直线与L的交点到F1,F2
的距离之和最短.
1 设P点的坐标为(m,n)
PF的中点在直线L上
∴PF1的中点坐标(m-3)/2,n/2满足直线L的方程
即(m-3)/2-(n/2)+9=0
PF1直线与L垂直
∴该直线的斜率k=n/(m+3)=-1 (已知直线L的斜率是1)
这样得到两个方程
m+n=-3
m-n=-15
解得m=-9 ,n=6
∴P点的坐标是(-9,6)
2 求直线PF2的方程
斜率k=(6-0)/(-9-3)=-1/2
y-0=-1/2(x-3)
整理得y=(-1/2)x+3/2
求此直线与L的交点A的坐标
y=(-1/2)x+3/2
x-y+9=0
得x=-5,y=4
∴A点的坐标是(-5,4)
据题意有|AF1|+|AF2|=√[-5+3)^2+4^2]+√[(-5-3)^2+4^2]=6√5
∴a=3√5
c=3 则b=√[a^2-c^2]=6
∴此椭圆的方程是(x^2/45)+(y^2/36)=1
可以随时联系.

没听说"椭圆最短"!

根据椭圆定义,使其最小 以及该直线的位置,取其左焦点,设关于该直线对称点为P ,则易算出P(-9,6) 。则 P于其右焦点的连线于直线L:X-Y+9=0 的交点 坐标即 M ,得M(-5,4) ,再根据定义算出 a=3sqrt(5) ,即三倍的根号5 。解出b^2=36 ,
所以方程为 x^2/45 +y^2/36=1 ....

全部展开

根据椭圆定义,使其最小 以及该直线的位置,取其左焦点,设关于该直线对称点为P ,则易算出P(-9,6) 。则 P于其右焦点的连线于直线L:X-Y+9=0 的交点 坐标即 M ,得M(-5,4) ,再根据定义算出 a=3sqrt(5) ,即三倍的根号5 。解出b^2=36 ,
所以方程为 x^2/45 +y^2/36=1 .

收起

椭圆最短就是椭圆最小
也就是说M到两焦点的距离最短
任取一个焦点,关于直线对称
连起来,取焦点

在直线L:X-Y+9=0上任意取一点M,过点M作F1(-3,0)F2(3,0)为焦点的椭圆.当M在什么位置时所作的椭圆最短,并求此椭圆方程是长轴最短 已知圆M:2x^2+2y^2-8x-8y-1=0,直线L:x+y-9=0,过直线L上一点A作三角形ABC,使角BAC=45度,边AB过圆心M,且B,C在圆M上,求点A的取值范围 设点M(a,b)是曲线C:y=x^2/2+lnx+2上的任意一点,直线l是曲线C在点M处的切线,那么直线l的斜率的最小值 已知F1,F2为椭圆x²/9+y²=1的两焦点,直线x-y+m=0上任意一点P均满足|PF1|+|PF2|>6,求m的取值范围 已知圆M;2X*X+2Y*Y-8X-8Y-1=0和直线L:X+Y-9=0,过直线L上一点A作三角形ABC使角BAC=45°,AB过圆心M,且B,C在圆M上1:当A的横坐标为4时,求直线AC的方程2:求点A的横坐标的取值范围 在直线l:x+y-4=0上取一点m,过m且以椭圆x2/16+Y2/12=1的焦点为焦点作椭圆,问m在何处时椭圆的长轴最短,并求方程 圆与直线的关系设P(x,y)为圆x^2+(y-1)^2=1上任意一点,要使不等式x+y+m>=0恒成立,问m的取值范围?为什么直线y>=-x-m必须在圆的下方? 已知圆M:2x^2+2y^2-8x-8y-1=0,直线l:x+y-9=0,过直线l上一点A作三角形ABC,使角BAC=45度,边AB过圆心M,且B、C在圆M上1 当点A的横坐标为4时,求直线AC的方程;2 求点A的横坐标的取值范围 点P(x,y)为直线l上一点,点M(4x+2y,x+3y)也在直线l上,求直线l方程 设P(x,y)为圆x2+(y-1)2=1上任意一点,欲使不等式x+y+m≥0恒成立,则m的取值范围是什么?解析是 欲使不等式x+y+m≥0恒成立就要圆x^2+(y-1)^2=1在直线x+y+m=0,即:y=-x-m上方为什么在直线的上方?看不懂 对于直线L上的任意一点(x,y),点(4x+2y,x+3y)仍然在直线上,求直线L的方程 在直线5x+y-1=0上有一点P,它到两定点A(-2,0),B(3,2)的距离相等,则点P的坐标是已知点P(x,y)是直线l上任意一点,点Q(4x+2y,x+3y)也在l上,则直线l的方程为 已知圆M:2x2+2y2-8x-8y-1=0,直线l:x+y-9=0,过直线l上一点A作△ABC,使∠BAC=45°,边AB过圆心M,且B,C在圆M上.(1)当点A的横坐标为4时,求直线AC的方程;(2)求点A的横坐标的取值范围. 在平面直角坐标系中,P是曲线C:y=x/1(x>0)上的动点在平面直角坐标系中,P是曲线C:y=x/1(x>0)上的动点,直线l:y=x与曲线C交于P0,若对于直线l上的任意一点A,AP>=AP0恒成立,则点A横坐标的取值范围是 对直线L上任意一点P(x,y),点Q(4x+2,x+3y)也在此直线上,求直线L的方程 对直线上任意一点P(x,y),则点Q(4x+2y,x+3y)也在l上,试求直线l上方程? 已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为m, 在直线L:x-y+9=0上任取一点M,M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短...在直线L:x-y+9=0上任取一点M,M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最