如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:38:31
如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识
xP;@%F ($pCBMTAJ,FL+ Hacc33y͛ @M|FA'lvHؿ3*tUʋRnmt^\.8 \D-Ur{lGer8qtHlk*y5X:Xd |R3Ÿ2Gߺg~:v:O#6??AncYZ~RY

如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识
如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识

如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识
首先有
平方平均数>=代数平均数
即((a^2+b^2)/2)^(1/2)>=(|a|+|b|)/2
由绝对值不等式,
|a|+|b|>=|a-b|
则((a^2+b^2)/2)^(1/2)>=(|a|+|b|)/2>=|a-b|/2
第一个不等式两边平方可直接证得