化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:40:54
化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数
x){3{: 7+hGө  Fh>md=lgS7$Sn~ TҬ R] хVĂ*lRS6FѡXA 2]2mT37@tiTh5p) BAWQ,c̼ l';v=mʳt_E5u!ʵ$فia

化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数
化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数

化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数
cos[(3k+1)π/3+x]+cos[(3k-1)π/3-x]
= 2 cos½[(3k+1)π/3+x+(3k-1)π/3-x] * cos½[(3k+1)π/3+x-(3k-1)π/3+x]
= 2 coskπ * cos(x+π/3)
= coskπ * (cosx - √3 sinx)
k 为偶数时,原式 = cosx - √3 sinx
k 为奇数时,原式 = - cosx + √3 sinx

化简 cos(3k+1π/3 +X)+cos(3k-1π/3-X)其中k属于整数 化简f(x)=cos【(6k+1/3)π+2x】+cos【(6k-1/ 3)π-2x】+2sin(π/6-2x)(x∈R,k∈Z)求值域和最小正周期 化简f(x)=cos【(6k+1/3) π+2x】+cos【(6k-1/ 3) π-2x】+2sin(π/6-2x)(x∈R,k∈Z)并求函数f(x)的 【高一数学】诱导公式的题目》》》化简:cos{[(3k+1)/3]π+x}+cos{[(3k-1)/3]π-x},其中k属于Z 使y=3-cos x/2取最小值的x的集合是( )A.{x|x=4kπ,k∈Z}B.{x|x=2kπ,k∈Z}C.{x|x=kπ,k∈Z}D.{x|x=3/2kπ,k∈Z}正确答案是B 化简cos[(3k+1)/3π+a]+cos[(3k-1)/3π-a] 化简f(x)=cos[(6k+1)π/3+2x]+cos[(6k-1)π/3-2x]+2√3sin(π/3+2x) x∈R,k∈Z 化简f(x)=cos[(6k+1)π/3+2x]+cos[(6k-1)π/3-2x]+2√3sin(π/6-2x) x∈R,k∈Z 化简f(x)=cos((6k+1)/3*π+2x)+cos((6k-1)/3*π-2x)(x∈R,k∈Z),并求函数f(x)的值域和最小正周期 化简:cos(3k+1/3×π+a)+cos(3k-1/3π-a),其中k∈Z 化简cos[(4k+1)π/4+x]+cos[(4k-1)π/4-x]k属于Z 化简f(x)=cos((6k+1)/π+2x))+cos(((6k-1)π)/3-2x)+2√3sin(π/3+2x)(x∈R,k∈Z),并球函数f(x)的值域和最小正周期thank you 函数f(x)=cos(2兀-x)+cos(((8k+1)/2)π-x),k 函数f(x)=cos(2兀-x)+cos(((8k+1)/2)π-x),k 函数f(x)=cos(-x/2)+根号3cos(4k+1/2派-x/2),k属于Zx属于R(1)化简f(x)求最小正周(2)[0,派]减区间 函数y=3cos((π/3)-2x)的递减区间是A.[kπ-(π/2),kπ+(5π/12)] (k∈z)B.[kπ+(5π/12),kπ+(11π/12)](k∈z)C.[kπ-(π/3),kπ+(π/6)](k∈z)D.[kπ+(π/6),kπ+(2π/3)](k∈z) 若sina=1/3,求cos((2k+1/2)π+a)+cos((2k-1/2)π-a)cos[(2k+1)π/2+a]+cos[(2k-1)π/2-a] 求使下列函数取得最大值,最小值的自变量x的集合,并写出最大值和最小值是什么y=1-(1/2)cos(π/3)x x属于R cos(π/3)x=1时最小值1/2(π/3)x=2kπ ,x=6k (k∈Z)cos(π/3)x=-1时最大值3/2(π/3)x=2kπ+π ,x=3(2k+1) cos[(3k+1)/3*π+α)+cos[(3k-1)/3*π+α],