在△ABC中,角啊,A,B,C的对边分别是a,b,c,已知向量p(c-2a,b),q(cosB,cosC),且p⊥q. (1)求角B的大小2.若b=2根号3,求△ABC的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:38:14
在△ABC中,角啊,A,B,C的对边分别是a,b,c,已知向量p(c-2a,b),q(cosB,cosC),且p⊥q. (1)求角B的大小2.若b=2根号3,求△ABC的最大值
xTnPC@iYtG^y3A^Zt BFCK…BzZ+?B5?ͫ׊scK6,ff0{6H|{*D )Fg%_N 0HTܫ@"]F\'̺IspeL^NXfII팿7pv:MXi}Gyd6m\0#ج R\L[ٍ

在△ABC中,角啊,A,B,C的对边分别是a,b,c,已知向量p(c-2a,b),q(cosB,cosC),且p⊥q. (1)求角B的大小2.若b=2根号3,求△ABC的最大值
在△ABC中,角啊,A,B,C的对边分别是a,b,c,已知向量p(c-2a,b),q(cosB,cosC),且p⊥q. (1)求角B的大小
2.若b=2根号3,求△ABC的最大值

在△ABC中,角啊,A,B,C的对边分别是a,b,c,已知向量p(c-2a,b),q(cosB,cosC),且p⊥q. (1)求角B的大小2.若b=2根号3,求△ABC的最大值
1.因为向量p=(c-2a,b),q=(cosB,cosC),且p⊥q
则向量的数量积p*q=0
即(c-2a)cosB +bcosC=0 (1)
由正弦定理得a/sinA=b/sinB=c/sinC
则a:b:c=sinA:sinB:sinC
所以(1)式可化为:
(sinC-2sinA)cosB+sinBcosC=0
即sinCcosB+cosCsinB-2sinAcosB=0
sin(B+C)-2sinAcosB=0 (2)
因为△ABC中,B+C=180°-A
所以sin(B+C)=sin(180°-A)=sinA
则由(2)式得
sinA-2sinAcosB=0
sinA(1-2cosB)=0
因为sinA>0,所以解上式得:
cosB=1/2
所以∠B=60°
2.由余弦定理得:b²=a²+c²-2ac*cosB
由第1小题知∠B=60°,b=2√3
则12=a²+c²-2ac*cos60°
即a²+c²-ac=12
由均值定理得a²+c²≥2ac (当且仅当a=c时取等号)
则2ac-ac ≤12
即ac ≤12
又三角形面积S=1/2 *ac*sinB=1/2 *ac*sin60°=√3ac/4
因为ac有最大值12,所以:
S△ABC的最大值是√3 *12/4=3√3,此时a=c=2√3

∠B=60°