已知已知a⊥b且丨a丨=2,丨b丨=1,若对两个不同时为零的实数k,t,使得a+(t-3)b与-ka+b垂直1)试将k表示成关于t的函数的解析式k=f(t)2)求k(min) (注意:a,b均表示向量,箭头略了)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:42:55
已知已知a⊥b且丨a丨=2,丨b丨=1,若对两个不同时为零的实数k,t,使得a+(t-3)b与-ka+b垂直1)试将k表示成关于t的函数的解析式k=f(t)2)求k(min) (注意:a,b均表示向量,箭头略了)
xUn@(Ɖ/cCk;MmBPW jThH^hi(RN_`}i ޝ9sfvd csm#\v[nc8]oI޳9v[um='Պv,jx)|#_+% Kc9aYnHΓNzz[}T9N(5z[*,tsDvZ~ӛ]tQ7 !/,ǻ۟H[kyz

已知已知a⊥b且丨a丨=2,丨b丨=1,若对两个不同时为零的实数k,t,使得a+(t-3)b与-ka+b垂直1)试将k表示成关于t的函数的解析式k=f(t)2)求k(min) (注意:a,b均表示向量,箭头略了)
已知已知a⊥b且丨a丨=2,丨b丨=1,若对两个不同时为零的实数k,t,使得a+(t-3)b与-ka+b垂直
1)试将k表示成关于t的函数的解析式k=f(t)
2)求k(min) (注意:a,b均表示向量,箭头略了)

已知已知a⊥b且丨a丨=2,丨b丨=1,若对两个不同时为零的实数k,t,使得a+(t-3)b与-ka+b垂直1)试将k表示成关于t的函数的解析式k=f(t)2)求k(min) (注意:a,b均表示向量,箭头略了)

1.已知向量a和b 的夹角为120°,|a|=1,|b|=3,则|5a - b|=7
|5a - b|=√| 5a-b |²=√(25|a|²+|b|²-10a·b)=√(25+9-30cos120°)=34+15=√49=7
2.已知向量|a|=4,|b|=1,a与b的夹角为120°,求|a+b|与|2a+3b|.
(1)|a+b|=√|a...

全部展开

1.已知向量a和b 的夹角为120°,|a|=1,|b|=3,则|5a - b|=7
|5a - b|=√| 5a-b |²=√(25|a|²+|b|²-10a·b)=√(25+9-30cos120°)=34+15=√49=7
2.已知向量|a|=4,|b|=1,a与b的夹角为120°,求|a+b|与|2a+3b|.
(1)|a+b|=√|a+b|²=√(a+b)²=√(a²+2a·b+b²)=√(16-2*4+4)=2√3
(2)|2a+3b|=√|2a+3b|²=√(4a²+9b²+12a·b)=√69
希望能解决您的问题。

收起