函数定义分现代函数和传统函数 那为什么这么分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:50:13
函数定义分现代函数和传统函数 那为什么这么分
xXNK`>"j?fv~ ?Ye[[fbwH.OԢUY'+b؈Zu]ƭ]Xa*{ma+Kn-j}ejfY*E_}"S7`F_ qb|ҾZF{e ]J m=E)Z:ߪZ3u{^ ҙ?UOrnaEiM~+ڃmcedx⣨~ݓÕ71PG86{|g͟4Xjm!2QʨJ^|ŪYmaY͖I_aٹyKjc_q؃a-~#VS6i5KNl$JvTe Y,R"; mBpbn0IW ܈pU5 GMW˗vQvl/@ Y*!.2,~*顟g^=^x=J7[dj\zp*O2 fR0)<3pv*&#wR8[U\%*2U z )cv3w.YN,y <0k4Cauo'KJ.UAPCphDRM|4P%9E`$cP4T>+ӛrw8; m{h 2;P ;|ͲJM{7)a\ѭISDI'nb)0dn P;#0^E2 .MJeorklgflB GП_?gQ~btы13ehZ{2Uy3V{[IwjuQu%mՏ >ԨY@7M84ڏ#ꜿ,i\7ӿO>]/Sd45Cl:C.QgCK>o4Ǻ3fԲDufԯ{m5E,>lHFsb'f;QaS3A0lGnyՀNNйhFT5FцMMOnoAO Rt_ip)?^یrMp] `R?P+c4"fԱ15xK4]<m/=Q)K9T;|CU{׏>Qze&Mo]Nr,YopC5݈8C?%jPziaV_tj =rc3y

函数定义分现代函数和传统函数 那为什么这么分
函数定义分现代函数和传统函数 那为什么这么分

函数定义分现代函数和传统函数 那为什么这么分
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展.本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索.
1、函数概念的纵向发展
1.1 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的.
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子.
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号.欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义.
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次.1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷.
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数.”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等).
1.4 现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数.其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”.库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了.1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来.因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展.

函数定义分现代函数和传统函数 那为什么这么分 函数定义分现代函数和传统函数 那为什么这么分 为什么称对应法则f为函数?函数的传统定义指的是因变量y是自变量x的函数,这很好理解,如匀变速直线运动质点的位移随时间变化,那么位移s就是时间t的函数.为什么现代数学称自变量和因变量 百度百科中函数的定义按两类分,传统和近代.但是,传统中函数是数集;而近代中函数是对应关系.那么如何理解函数定义? 在函数的传统定义中,因变量y是自变量x的函数,那么函数就是一个数,一个变数.而在现代定义中,函数是定义...在函数的传统定义中,因变量y是自变量x的函数,那么函数就是一个数,一个变数.而在 为什么初中函数和高中函数的定义不一样 C语言中函数类型与函数定义的区别?那函数原型和函数定义的区别呢? 不可以在一个函数中定义另一个函数 ,那为什么可以在main函数定义了,怎么理解了? 想了解幂函数的定义 和形式 问题是下列函数中那几个函数是幂函数 函数和一次函数的定义!急 正比例函数定义和例子 函数的定理和定义 主函数中给x赋了值 为什么还说我定义的函数没有定义X 那要怎样才能在定义函数中给X赋值? 为什么要用虚函数似乎所有虚函数能做的事情,我都可以用函数重定义和调用父类版本的方式实现,那为什么还要用虚函数呢,它到底有什么优点 问:函数的定义是什么,那函数的奇偶性是什么, 函数 有界性 定义M>0.那 -7 增函数和减函数怎么分 在C#中定义一个函数有时函数名字前加get和set为什么