已知tanA=2,则sin²A+sinAcosA-2cos²A=

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 14:53:22
已知tanA=2,则sin²A+sinAcosA-2cos²A=
x){}KKmtv,SS64v2u$T&HtMv6dW 5

已知tanA=2,则sin²A+sinAcosA-2cos²A=
已知tanA=2,则sin²A+sinAcosA-2cos²A=

已知tanA=2,则sin²A+sinAcosA-2cos²A=
sin²+cos²=1
所以原式=(sin²A+sinAcosA-2cos²A)/(sin²A+cos²A)
上下除以cos²A
由sin/cos=tan
则原式=(tan²A+tanA-2)/(tan²A+1)=4/5