设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:59:29
xPžRI¶@%kRtAKDs\83-3˙Qڛo{;Aңw3D&tCCع%6,P2dIIZ5NM *E.Ri&*GhB(qk\>A&%'*t6ɅXXcSLlHX5y(rSj
设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
根据克莱姆法则,若线性方程组的行列式为零,则方程组有唯一解
因为现在方程组有两个不同向量解,所以|A|=0
设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!
A是N阶方阵,n维向量a1,a2.an其次线性方程组Ax=0的线性无关的解,n维向量β不是Ax=0的解,求证a1,a2.an,β线性无关.
设n元齐次线性方程,r(A)=n-3,且a1,a2,a3是其3个线性无关的解,则方程组的基础解系是( A a1,a2,a1+a2B a1-a2,a2-a3,a3-a1C a1,a1+a2,a1+a2+a3D a1+a2+a3,a1-a2
设n阶方阵A的每一行元素之和等于0,r(A)=n-1,则齐次线性方程Ax=0的通解是______?
设A是n阶方阵,且A2=A,证明A+E可逆
设A是n阶方阵,已知线性方程AX=0有非0解证A方X=0也要有非0解
设A 为 3阶方阵,A1,A2,A3 为按列划分的三个子块,则下列行列式中与 |A|等值的是A.|A1-A2 A2-A3 A3-A1| B.|A1 A1+A2 A1+A2+A3|C.|A1+A2 A1-A2 A3| D.|2A3-A1 A1 A1+A3|
已知A是n阶方阵,a1,a2,a3为n维列向量,且a1≠0,Aa1=a1,Aa2=a1+a2,Aa3= a2+a3,求证a1,a2,a3线性无关
简单的线代证明题设A是n阶方阵,a1,a2分别是属于A的两个不同的特征值x1,x2的特征向量,证明a1+a2不是A的特征向量
设a是n阶方阵
麻烦帮看下这道线性代数的题目设A为n阶方阵,r(A)=n-1,又a1,a2是齐次线性方程组AX=0的两个不同解,则AX=0的通解是()A.k×a1B.k×a2C.k(a1+a2)D.k(a1-a2)可是为什么ABC不可以呢?难道只有a1-a2才是基础解系?
设n阶方阵A的两个特征值λ1,λ2所对应的特征向量分别为a1与a2,且λ1=-λ2不等于0,判断a1,a2是否A的特征向量,是否为A^2特征向量?是判断a1+a2 和a1-a2 是否为A的特征向量,是否为A^2的的特征向量哈,
设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa3=a2+a3 证明a1 a2 a3 线性
线性代数问题,解析就采纳哦设A是N阶方阵,A=(a1,a2……an)的列向量组线性无关,则方程组AX= -a2+a3的唯一解X的t次方=?
设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1
设向量组a1,a2,a3线性无关,则下列向量组线性相关的是(A) a1-a2,a2-a3,a3-a1 (B) a1+a2,a2+a3,a3+a1 (C) a1-2a2,a2-2a3,a3-2a1 (D) a1+2a2,a2+2a3,a3+2a我想问为什么(b1,b2,b3)=(a1,a2,a3)K,K为一3阶方阵 【当detK为0时】,(A)就
设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵?
设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵