一道高一数学练习题(属于平面向量范围内)已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:37:05
一道高一数学练习题(属于平面向量范围内)已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角.
xTn@*&%6j^@C (B+A-D#_ڈFUeywfϞ93 'N NuVRC50μ>ֽOA2龕SQ'O,G&T?&lT?dC`\RLD+oI<3!nrݷVƾ2AFosT_\CCc'ۓ,6>AEs\Si\Mv/գ9ypB TĂ&=vTbDq&dGQa؎؀ϢӯވR0r(F^s|\xY ?15!χQhSw !YZ H7PFxt PKgKPCv^MJN[\Nb۾AZ K9(AiZV"<dV+d/}?k\ګpMH*uڛb#jfwKߺ,LeWQRxDu B{{{{e^:5PqNxlC@ynaX^2 cE饚+jk/݋]bƖN^pޯ>!{| ࢻGjNn6AyփH~~

一道高一数学练习题(属于平面向量范围内)已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角.
一道高一数学练习题(属于平面向量范围内)
已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角.

一道高一数学练习题(属于平面向量范围内)已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角.
向量 a 、b 、c 两两所成的角相等有两种情况:
1、所成的角两两都为0°.即,三个向量在同一条直线上.
|a + b + c|=6
2、两两所成的角为:120°.
(a + b + c)²=a²+b²+c²+2ab+2bc+2ca=1+4+9-2-6-3=3
所以,a + b + c=根3

向量 a 、b 、c 两两所成的角相等 夹角为120 长度为 根号3

a 、b 、c 两两所成的角相等,那么它们的夹角均为120°,那么可以把a、b、c的向量设成a(0,1)、b(1,√3)、c(3/2,3√3/2)
则a+b+c=(5/2,2√3/2) |a+b+c|=√37/2
夹角的余弦用公式就算出来了cosα=?、cosβ=?、cosγ=?(就不算了)夹角就是反余弦谢谢这位朋友。貌似我错了:第二回答个是对的 模长√3 但是要算...

全部展开

a 、b 、c 两两所成的角相等,那么它们的夹角均为120°,那么可以把a、b、c的向量设成a(0,1)、b(1,√3)、c(3/2,3√3/2)
则a+b+c=(5/2,2√3/2) |a+b+c|=√37/2
夹角的余弦用公式就算出来了cosα=?、cosβ=?、cosγ=?(就不算了)夹角就是反余弦

收起

因为ABC两两所成的角相同,所以两两所成的角度肯定是120° 用解3角行的知识得到A+B的值,同理得到A+B+C

一道高一数学练习题(属于 平面向量 与三角形正、余弦定理范围内):求等腰直角三角形中两直角边上的中线所成的钝角的度数(精确到 1′ ). 一道高一数学练习题(属于平面向量范围内)已知向量 a 、b 、c 两两所成的角相等,并且 | a | = 1 ,| b | = 2 ,| c | = 3.求向量 a + b + c 的长度及与三已知向量的夹角. 一道高一数学练习题(属于平面向量和正、余弦定理范围内):已知向量 OA→ ,OB→ ,OC→ 满足条件 OA→ + OB→ + OC→ = 0 (零向量),| OA→ | = | OB→ | = | OC→ | = 1 ,求证 :△ABC 是正三 一道高一数学练习题(属于 平面向量 与三角形正、余弦定理范围内):求等腰直角三角形中两直角边上的中线所成的钝角的度数(精确到 1′ ).正、余弦定理范围内,所以请朋友们尽量使 一道高一数学练习题(属于 平面向量的数量积及运算律 范围内)设 a 是非零向量,且 b ≠ c ,求证:a • b = a • c ⇔ a ⊥ (b - c ).( 符号 ⇔ 是“等价于”的意思,再或者是“充要 一道高一数学练习题(属于 平面向量的数量积及运算律 范围内)已知 | a | =3,| b | = 4,且 a 与 b 的夹角 θ =150°,求 a • b ,( a +b )² ,| a + b |. 一道高一数学练习题(属于平面向量范围内):如图,点 D 、E 、F 分别是 △ABC 的边 AB 、BC 、CA 的中点,求证 :AE 、BF 、CD相交于同一点 G ,且 GA/AE = GB /BF = GC /CD = 2 /3(点 G 叫做△ABC 一道高一数学练习题(属于平面向量加减法范围以内的题)一架飞机向北飞行300km,然后改变方向向西飞行300km,求飞机飞行的路程及两次位移的和. 一道高一数学题(属于平面向量范围内):函数 Y = cos ( x - ∏/3 ) +2 的图像经过怎样的平移,可以得到函数 Y = cos X 的图像?(括号内是 X 减去 3分之 pi ).该题属于高一平面向量范围内的 一道高一数学练习题(属于平面向量加减法范围以内)已知两个不共线的向量a、b,求做向量 c,使a + b + c = 0.表示a、b、c的有向线段能构成三角形吗? 一道高一数学练习题(属于平面向量加减法范围以内)化简:NQ→ + QP→ + MN→ -MP→ (前三个向量相加,减掉最后一个向量,因为符号→无法写在字母上方,只能这样将就了.我自己画图整理后 一道高一数学题(属于平面向量之“实数与向量的积”与“平面向量基本定理”范围内)根据下列各小题中的条件,分别判断四边形ABCD的形状.(1)AD→ = BC→ ;(2)AD→ = 1/3 BC→ ;(3 一道高一数学题(属于平面向量之“实数与向量的积”与“平面向量基本定理”范围内)△ABC中,AD→ = 1/4 AB→ ,DE‖BC,且与边AC相交于点E,△ABC的中线AM与DE相交于点N,设AB→ = a,AC→ = b,用a 一道高一数学题(属于平面向量和正余弦定理范围内):已知 | a | = 2 ,| b | = 1 ,a 与 b 的夹角是 60°,求向量 2a + 3a 与 3a -b 的夹角(精确到 1 ′)不好意思,上面打错了,是求向量 2a + 3b 与 3a 高一数学平面向量的公式 高一数学平面向量第十一题 高一数学平面向量基本定理 一道高一数学题(属于平面向量和正余弦定理范围内):已知 | a | = 2 ,| b | = 1 ,a 与 b 的夹角是 60°,求向量 2a + 3b 与 3a -b 的夹角(精确到 1 ′)(麻烦朋友们讲的详细一点,我比较笨,)