解方程x1+x2=x2+x3=x3+x4=…=x1998+x1999=1 x1+x2+x3+…x1998+x1999=1999

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:51:26
解方程x1+x2=x2+x3=x3+x4=…=x1998+x1999=1 x1+x2+x3+…x1998+x1999=1999
x){|i;0Ԯ00Ү00֮0}԰̶BDZ*hPdMR>M/^d.$ 3+ ma'>[V<7"0[j cb[af P@u4400* iCXCPzdBY {n[n_\g Y0ٌqO'Lg~g] Dص 8_!֋K!6(dGÓO7?:!>

解方程x1+x2=x2+x3=x3+x4=…=x1998+x1999=1 x1+x2+x3+…x1998+x1999=1999
解方程x1+x2=x2+x3=x3+x4=…=x1998+x1999=1 x1+x2+x3+…x1998+x1999=1999

解方程x1+x2=x2+x3=x3+x4=…=x1998+x1999=1 x1+x2+x3+…x1998+x1999=1999
因为x1+x2=x2+x3
则x1=x3
以此类推得
x1=x3=x5...=x1999
x2=x4=x6=...=x1998
因为 x1+x2+x3+…x1998+x1999=1999
则1000*x1+999*x2=1999
因为x1+x2=1
可得
x1=1000=x3=x5=...x1999
x2=-999=x4=x6=...x1998

x1是x^1吗?x2是x^2吗……

x1+x2=x2+x3 so x1=x3
以此类推得
x1=x3=x5...=x1999
x2=x4=x6=...=x1998
再可得
1000x1+999x2=1999
x1+x2=1
一不小心又得
x1=1000=x3=x5=...x1999
x2=-999=x4=x6=...x1998