已知函数f(x)=(a+1)lnx+ax+1(1)讨论f(x)的单调性:(2)设a4|x1-x2|,求a的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:42:30
已知函数f(x)=(a+1)lnx+ax+1(1)讨论f(x)的单调性:(2)设a4|x1-x2|,求a的取值范围.
xTMo@+k"HՃ{*r :IIIBJI$`z_.q !=}K?o<۝ΌMQ"K,E'~/Vt>.[v)hV\eFM]&[tE ~^IϖM"oC2(aY6K *~}"/KLQ”cҙ%*` "qx]  2P,X#?ۂ'B6'~#lg.δc[nV(ΤdL'z F!$tP0L-b*D*HlTg a8 B6LLJffYAe7Ng [R 5VY#!5Lrr%P$aS

已知函数f(x)=(a+1)lnx+ax+1(1)讨论f(x)的单调性:(2)设a4|x1-x2|,求a的取值范围.
已知函数f(x)=(a+1)lnx+ax+1(1)讨论f(x)的单调性:(2)设a<-1.如果对任意x1,x2属于0到正无穷,
|f(x1)-f(x2)>4|x1-x2|,求a的取值范围.

已知函数f(x)=(a+1)lnx+ax+1(1)讨论f(x)的单调性:(2)设a4|x1-x2|,求a的取值范围.
(1)x属于(0,正无穷).
f(x)'=(a+1)/x+a,
当a>=0时,f(x)'恒大于0,(0,正无穷)上递增;
当a

(1)x属于(0,正无穷)。
f(x)'=(a+1)/x+a,
当a>=0时,f(x)'恒大于0, (0,正无穷)上递增;
当a<=-1时,f(x)'恒小于0,(0,正无穷)上递减;
当a在(-1,0)时,x在(0,-(a+1)/a)上递增,(-(a+1)/a,正无穷)递减。
(2)a<-1, f(x)在(0,正无穷)上递减
设x1

全部展开

(1)x属于(0,正无穷)。
f(x)'=(a+1)/x+a,
当a>=0时,f(x)'恒大于0, (0,正无穷)上递增;
当a<=-1时,f(x)'恒小于0,(0,正无穷)上递减;
当a在(-1,0)时,x在(0,-(a+1)/a)上递增,(-(a+1)/a,正无穷)递减。
(2)a<-1, f(x)在(0,正无穷)上递减
设x1f(x2)。
f(x1)-f(x2)>4(x2-x1),即(a+1)(lnx1-lnx2)>(4+a)(x2-x1)。
a+1<0, (lnx1-lnx2)/(x2-x1)<(4+a)/(1+a), g(x)=lnx是增函数,左式<0并趋近于0
对任意x1,x2上式都成立,(4+a)/(1+a)>=0, 则a<=-4。
如果还有不懂的,可以点击用户名到我网站来提问,我会尽力为你回答的

收起

(1)
f‘(x)=(a+1)/x+a
由导函数图像得
a>0时f(x)在(-无穷,-(a+1)/a),(0,+无穷)递增 在[-(a+1)/a,0]递减
a<-1时f(x)在(-无穷,-(a+1)/a),(0,+无穷)递减 在[-(a+1)/a,0]递增
-1(2)