已知椭圆c:x²/a²+y²/b²=1(a>b>0)的离心率为二分之一,以原点o为圆心,椭圆的短半轴长为半径的圆与直线x-y+6½=0相切(1)求椭圆的标准方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:37:14
已知椭圆c:x²/a²+y²/b²=1(a>b>0)的离心率为二分之一,以原点o为圆心,椭圆的短半轴长为半径的圆与直线x-y+6½=0相切(1)求椭圆的标准方程.
已知椭圆c:x²/a²+y²/b²=1(a>b>0)的离心率为二分之一,以原点o为圆心,椭圆的短半轴长为半径的圆与直线x-y+6½=0相切(1)求椭圆的标准方程.
已知椭圆c:x²/a²+y²/b²=1(a>b>0)的离心率为二分之一,以原点o为圆心,椭圆的短半轴长为半径的圆与直线x-y+6½=0相切(1)求椭圆的标准方程.
1、e=c/a=1/2,c=a/2,b^2=a^2-c^2=3a^2/4,
b=√3a/2,
设椭圆方程为:x^2/a^2-y^2/(3a^2/4)=1,
圆的方程为:x^2+y^2=3a^2/4,
直线y=x+√6,代入圆方程,
x^2+(x+√6)^2-3a^2/4=0,
2x^2+2√6x+6-3a^2/4=0,
当直线和圆相切时,判别式b^2-4ac=0,
a=2,
b=3*/4=3,c=1,
故方程为:x^2/4+y^2/3=1.
2.设A(m,n),B(m,-n),BP:x=ky+4,代入椭圆方程,
得(3k^2+4)y^2+24ky+36=0
y1=-n,y2=y1y2/y1=36/[-n(3k^2+4)],
结合k=(4-m)/n,
得y2=36/[-n( (3(m-4)^2+4n^2)/n^2]
又m^2/4 + n^2/3=1,
得3m^2+4n^2=12,
故y2=3n/(2m-5)
E(x2,y2),x2=ky2+4=(4-m)/n*3n/(2m-5)+4=(5m-8)/(2m-5)
AE:(y-n)/(x-m)=(y2-n)/(x2-m)=n(m-4)/[(m-1)(m-4)]=n/(m-1)
令Y=0,得x=1,
即恒过Q(1,0)
希望对你有所帮助