设f(x)在[0,a]上连续,在(0,a)内可向导.切f(a)=0,证明存在一点ζ,E(0,a),使f(ζ)+ζf'(ζ)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:09:43
设f(x)在[0,a]上连续,在(0,a)内可向导.切f(a)=0,证明存在一点ζ,E(0,a),使f(ζ)+ζf'(ζ)=0
x){n_F9+ tczku"@ͧmO?0=zO;45m t^o|6@uOv4-Mİ5I*ҧ]v6ٓKm :B/gotݬtv(֡40[7 2xstA<<;{߿

设f(x)在[0,a]上连续,在(0,a)内可向导.切f(a)=0,证明存在一点ζ,E(0,a),使f(ζ)+ζf'(ζ)=0
设f(x)在[0,a]上连续,在(0,a)内可向导.切f(a)=0,证明存在一点ζ,E(0,a),使f(ζ)+ζf'(ζ)=0

设f(x)在[0,a]上连续,在(0,a)内可向导.切f(a)=0,证明存在一点ζ,E(0,a),使f(ζ)+ζf'(ζ)=0
令ζ=0
f(ζ)=0,f(a)=0
零点定理,可证
f'(ζ)=f(ζ)/ζ=(f(ζ)-f(0))/(ζ-0)