设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:54:20
设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为
xRN@ąIK.eD?ȮQЀƠ@0[c^'dn-ĕnN11tsYkAx7.lG2ƷR҃)n`sj0!%O,:%EǸYGVTW3LM hSJǎB:))!W` И8 |Q ǠueFFxVy1c`k\9;臔( (9φmgbóa"vx&GI GtW]+֧6,!C΢rƙ)8Bn30|nZ»R#nURI1!N#n⭺)c

设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为
设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为

设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为
先画出图形.设椭圆中心为坐标原点O(0,0).由椭圆的对称性可知,过点O的弦AB到上下焦点的距离是相等的.故不妨设F为其上焦点,也即F(0,4).
由椭圆关于y轴对称,故点A到y轴的距离=点B到y轴的距离.

S△ABF=S△AOF+S△BOF
=1/2*OF*点A到y轴的距离+1/2*OF*点B到y轴的距离
=OF*点A到y轴的距离
≤4×3=12
即三角形ABF的面积的最大值为12
不明白请追问.

设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值 设AB是过椭圆中心的弦,F是椭圆的一个焦点.则三角形ABC最大面积?椭圆为x^2+2y^2=1 设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值 用参数方程 设AB是椭圆x^2/9+y^2/25=1的中心的弦,F是椭圆的一个焦点,则三角形ABF的面积的最大值为 过椭圆是椭圆x^2/25+y^x/9=1的焦点,倾斜角为π/4弦AB的长为 设a,b是椭圆3x^2+y^2=λ上的两点,点N(1,3)是线段AB的中点,λ的取值范围N在椭圆内部所以 λ> 3+9=12为什么? 已知椭圆C:(x^2)/4+(y^2)/3=1 设椭圆C右焦点为F2,A、B是椭圆上的点,且向量AF2=向量2F2B,求直线AB的斜率 设P(x,y)是椭圆x^2/144 + y^2/25 = 1上的一点,则x+y的取值范围是_______ 设P(x,y)是椭圆x^2/9+y^2/4=1上的一点,则2x-y的最大值是? 设过椭圆x^2/25+y^2/16=1的左焦点的弦为AB,是否存在弦长为6的弦AB? 设P(x,y)是椭圆x²/25+y²/16=1上一点,则2x/5+3y/4的最小值是? 设椭圆x^2/25+y^2/9=1上的一点P的横坐标是2,求(1)点P到椭圆左焦点的距离PF1(1)点P到椭圆右焦点的距离PF2 设A,B是椭圆x^2/4+y^2/3=1上的两点,若直线AB斜率为-1,且经过椭圆的左焦点,求|AB|. P(x,y)是椭圆x∧2/16+y∧2/9=1上一点,求y/x的取值范围?是否可以设y/x=t,然后和椭圆的方程联立求范围? 设p是椭圆x^2/25+y^2/16=1上的点,若f1,f2是椭圆的两个焦点,则|pf1|+|pf2|= 设P是椭圆x^2/25+y^2/16=1上的点,若F1,F2是椭圆的两个焦点,则绝对值PF1+绝对值 设P是椭圆C:x^2/9+y^2/4=1上的点,F1,F2是椭圆的两个焦点,求角F1PF2的最大值 设P是椭圆x^2/9+y^2/4=1上一 点,F1,F2是椭圆的两焦点,则cos∠F1PF2的最小值